Advertisement

Aerobiologia

, Volume 23, Issue 2, pp 145–151 | Cite as

The contribution of long-distance transport to the presence of Ambrosia pollen in central northern Italy

  • L. Cecchi
  • T. Torrigiani  Malaspina
  • R. Albertini
  • M. Zanca
  • E. Ridolo
  • I. Usberti
  • M. Morabito
  • P. Dall’ Aglio
  • S. Orlandini
Original Paper

Abstract

Ragweed is an allergenic weed of public health concern in several European countries. In Italy ragweed occurs prevalently in north-north-eastern regions, where sensitization is increasing. Because of the small diameter of pollen grains, ragweed pollen is often involved in episodes of long-range transport, as already shown in central Italy. The objective of this study was to evaluate the extent of such transport by comparing pollen and meteorological data for two northern Italian cities (Parma and Mantova) with data from Pistoia and Florence in central Italy. In 2002 and 2004 peaks in ragweed pollen levels were detected in these four cities on the same day, and concentrations of the grains were above clinical thresholds. Weather-map analysis and computation of back-trajectories showed that air masses from eastern Europe might carry ragweed pollen to a wide area of central and northern Italy. These findings suggest that episodes of long-range transport of ragweed pollen could be clinically relevant, resulting in sensitization of a large number of people. The results might provide a basis for monitoring and forecasting periods of long-distance transport with the objective of reducing their effects on allergic patients.

Keywords

Allergy Back-trajectories Long-distance transport Meteorology Pollen Ragweed 

Notes

Acknowledgements

Lorenzo Cecchi, Tommaso Torrigiani Malaspina, and Marco Morabito were supported by the MeteoSalute Project, Regional Health System of Tuscany, Italy. We also thank Giorgio Bartolini and Martina Petralli for technical support and Marzia Onorari and Mariapaola Domeneghetti for aerobiological data for Florence and Pistoia. The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for provision of the Hysplit transport and dispersion model and/or the READY website (http://www.arl.noaa.gov/ready.html) used in this publication.

References

  1. Arbes, S. J. Jr., Gergen, P. J., Elliott, L., & Zeldin, D. C. (2005). Prevalence of positive skin test responses to 10 common allergens in the US population: Results from the Third National Health and Nutrition Examination Survey. Journal of Allergy and Clinical Immunology, 116(2), 377–383.CrossRefGoogle Scholar
  2. Asero, R. (2002). Birch and ragweed pollinosis north of Milan: A model to investigate the effects of exposure to new airborne allergens. Allergy, 57, 1063–1066.CrossRefGoogle Scholar
  3. Asero, R., Wopfner, N., Gruber, P., Gadermaier, G., & Ferreira, F. (2006). Artemisia and Ambrosia hypersensitivity: Co-sensitization or co-recognition? Clinical and Experimental Allergy, 36, 658–665.CrossRefGoogle Scholar
  4. Banken, R., & Comtois, P. (1990). Concentration du pollen de l’herbe a poux et prevalence de la rhinite allergique dans deux municipalities des Laurentides. Allergie et Immunologie, 24(3), 91–94.Google Scholar
  5. Bartková-Ščevková, J. (2003). The influence of temperature, relative humidity and rainfall on the occurrence of pollen allergens (Betula, Poaceae, Ambrosia artemisiifolia) in the atmosphere of Bratislava (Slovakia). International Journal of Biometeorology, 48, 1–5.CrossRefGoogle Scholar
  6. Belmonte, J., Vendrell, M., Roure, J. M., Vidal, J., Botey, J., & Cadahía, À. (2000). Levels of Ambrosia pollen in the atmospheric spectra of Catalan aerobiological stations. Aerobiologia, 16, 93–99.CrossRefGoogle Scholar
  7. Benninghoff, W. S., & Edmonds, R. L. (1972). Ecological system approaches to aerobiology. Identification of component elements and their functional relationships. International biological program. aerobiology program. US/IBP aerobiology program handbook N. 2, University of Michigan, Ann. Arbor.Google Scholar
  8. Beverland, I. J., Tunes, T., & Sozanska M. (1998). Effect of long-range transport on local PM10 concentrations in the UK. International Journal of Environmental Health Research, 10, 229–238.CrossRefGoogle Scholar
  9. Cecchi, L., Morabito, M., Domeneghetti, M. P., Crisci, A., Onorari, M., & Orlandini, S. (2006). Long-distance transport of ragweed pollen as potential cause of allergy in central Italy. Annals of Allergy, Asthma and Immunology, 96(1), 86–91.Google Scholar
  10. Cvitanovic, S., Znaor, L., Perisic, D., & Grbic, D. (2004). Hypersensitivity to pollen allergens on adriatic coast. Arhiv za Higijenu Rada, I Toksikologiyu, 55, 147–154.Google Scholar
  11. Clot, B., Gehrig, R., Peeters, A. G., Schneiter, D., Tercier, P., & Thibaudon, M. (2002). Pollen d’ambroisie en Suisse: production locale ou transport? European Annals of Allergy Clinical Immunology, 34, 126–128.Google Scholar
  12. Defila, C., & Clot, B. (2001). Phytophenological trends in Switzerland. International Journal of Biometeorology, 45, 203–207.CrossRefGoogle Scholar
  13. D’Amato, G., Spieksma, F. T. H., & Liccardi, G. (1998). Pollen related allergy in Europe. Allergy, 53, 567–578.CrossRefGoogle Scholar
  14. Dahl, A., Strandhede, S. O., & Wihl, J. A. (1999). Ragweed—an allergy risk in Sweden? Aerobiologia, 15, 293–297.CrossRefGoogle Scholar
  15. Dessaint, F., Chauvel, B., & Bretagnolle, F. (2005). Ragweed (Ambrosia artemisiifolia L.): Expansion history of a biological pollutant in France. Medicine Sciences (Paris), 21(2), 207–209.Google Scholar
  16. Draxler, R. R., & Rolph, G. D. (2003). HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website (http://www.arl.noaa.gov/ready/hysplit4.html). NOAA Air Resources Laboratory, Silver Spring, MD.
  17. Hirst, J. M. (1952). An automatic volumetric spore trap. The Annals of Applied Biology, 39, 257–265.CrossRefGoogle Scholar
  18. Jäger, S. (1998). Global aspects of ragweed in Europe. In: Satellite symposium proceedings. 6th International congress on aerobiology, Perugia, Italy. ALK-Abellò, Høsholm, 6–8.Google Scholar
  19. Jäger, S. (2000). Ragweed (Ambrosia) sensitization rates correlate with the amount of inhaled airborne pollen. A 14-year study in Vienna, Austria. Aerobiologia, 16, 149–153.CrossRefGoogle Scholar
  20. Jarai-Komlodi, M., & Juhasz, M. (1993). Ambrosia elatior (L.) in Hungary (1989–1990). Aerobiologia, 9, 75–78.CrossRefGoogle Scholar
  21. Laaidi, K., & Laaidi, M. (1999). Airborne pollen of Ambrosia in Burgundy (France) 1996–1997. Aerobiologia, 15, 65–69.CrossRefGoogle Scholar
  22. Laaidi, M., Laaidi, K., Besancenot, J. P., & Thibaudon, M. (2003). Ragweed in France: An invasive plant and its allergenic pollen. Annals of Allergy, Asthma and Immunology, 91(2), 195–201.CrossRefGoogle Scholar
  23. Makra, L., Juhász, M., Borsos, E., & Béczi, R. (2004). Meteorological variables connected with airborne ragweed pollen in Southern Hungary. International Journal of Biometeorology, 49, 37–47.CrossRefGoogle Scholar
  24. Mandrioli, P., & Puppi, G. (1978). Pollini allergenici in Emilia Romagna. Collana Studi e Documentazione n. 13, Dip. Bologna: Ambiente e territorio R.E.R.Google Scholar
  25. Mandrioli, P., Di Cecco, M., & Andina, G. (1998). Ragweed pollen: The aeroallergen is spreading in Italy. Aerobiologia, 14, 13–20.Google Scholar
  26. Mezei, G., Jarai-Komoldi, M., Medzihradsky, Z., & Cserhati, E. (1995). Seasonal allergenic rhinitis and pollen count (a 5-year survey in Budapest). Orvosi Hetilap, s136, 1721–1724.Google Scholar
  27. Ostroumov, A. I. (1971). Hypersensitivity caused by ambrosia pollen in the Kuban area (Krasnodar Region). Allergie und Immunologie (Leipz), 17(3), 202–207.Google Scholar
  28. Peeters, A. G. (2000). Ambrosia sp pollen in Switzerland. Aerobiologia, 16, 295–297.CrossRefGoogle Scholar
  29. Peternel, R., Čulig, J., Srnec, L., Mitić, B., Vukušić, I., & Hrga, I. (2005). Variation in ragweed (Ambrosia artemisiifolia L.) concentration in central Croatia, 2002–2003. Annals of Agricultural and Environmental Medicine, 12, 11–16.Google Scholar
  30. Pignatti, M. (1982). Flora d’Italia III: 782–783.Google Scholar
  31. Piotrowska, K., & Weryszko-Chmielewska, E. (2006) Ambrosia pollen in the air of Lublin, Poland. Aerobiologia, 22, 151–158, DOI 10.1007/s10453-006-9020-4.CrossRefGoogle Scholar
  32. Puc, M. (2006). Ragweed and mugworth pollen in Szczecin, Poland. Aerobiologia, 22, 67–78, DOI 10.1007/s10453-005-9010-y.CrossRefGoogle Scholar
  33. Rolph, G. D. (2003) Real-time environmental applications and display system (READY) Website (http://www.arl.noaa.gov/ready/hysplit4.html). NOAA Air Resources Laboratory, Silver Spring, MD.
  34. Rybncek, O., & Jäger, S. (2001). Ambrosia (ragweed) in Europe. Allergy and Clinical Immunology International, 13, 60–66.CrossRefGoogle Scholar
  35. Stepalska, D., Szczepanek, K., & Myszkowska, D. (2002). Variation in Ambrosia pollen concentration in southern and central Poland in 1982–1999. Aerobiologia, 18, 13–22.CrossRefGoogle Scholar
  36. Stohl, A. (1998). Computation, accuracy and applications of trajectories—a review and bibliography. Atmospheric Environment, 32, 947–966.CrossRefGoogle Scholar
  37. Verini, M., Rossi, N., Verrotti, A., Pelaccia, G., Nicodemo, A., & Chiarelli, F. (2001) Sensitization to environmental antigens in asthmatic children from a central Italian area. The Science of the Total Environmental, 270, 63–69.CrossRefGoogle Scholar
  38. Yankova, R., Zlatev, V., Baltadjieva, D., et al. (2000). Quantitative dynamics of Ambrosia pollen grains in Bulgaria. Aerobiologia, 16, 299–301.CrossRefGoogle Scholar
  39. Zauli, D., Tiberio, D., Grassi, A., Ballardini, G., et al. (2006). Ragweed pollen travels long distance. Annals of Allergy, Asthma and Immunology, 97, 122–123.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • L. Cecchi
    • 1
    • 2
  • T. Torrigiani  Malaspina
    • 1
  • R. Albertini
    • 3
  • M. Zanca
    • 4
    • 6
    • 7
  • E. Ridolo
    • 5
  • I. Usberti
    • 3
  • M. Morabito
    • 1
  • P. Dall’ Aglio
    • 3
  • S. Orlandini
    • 1
  1. 1.Interdepartmental Centre of BioclimatologyUniversity of FlorenceFlorenceItaly
  2. 2.Ambulatorio di AllergologiaAzienda Sanitaria FirenzeFlorenceItaly
  3. 3.Department of Medical Clinic, Nephrology and Health SciencesUniversity of ParmaParmaItaly
  4. 4.Ambulatorio di AllergologiaAzienda Ospedaliera C. Poma - P.O. Pieve di CorianoMantovaItaly
  5. 5.Clinical SciencesUniversity of ParmaParmaItaly
  6. 6.Presidio Ospedaliero Pieve CorianoCentralinoItaly
  7. 7.Ospedale di SuzzaraSuzzaraItaly

Personalised recommendations