, Volume 23, Issue 2, pp 119–129 | Cite as

Indoor and outdoor pollen concentrations in private and public spaces during the Betula pollen season

  • Timo HuggEmail author
  • Auli Rantio-Lehtimäki
Original Paper


Although the number of studies of pollen concentrations inside and outside buildings is increasing, little is known about the efficiency of penetration of pollen from outdoor to indoor air, and further. We studied indoor and outdoor pollen concentrations in the town of Lappeenranta and in the municipality of Rautjärvi in SE Finland from May 3–23, 2004, i.e. throughout the Betula pollen season, and assessed the risk of exposure to pollen grains. Pollen concentrations were measured inside and outside a block of flats, a detached house, and the regional central hospital, using rotorod-type samplers; in the town of Joutseno data were compared with Burkard counts. Outdoor concentrations of Betula pollen grains ranged between low and abundant (0–855 grains m−3). The corresponding indoor concentrations near the main front doors varied from low to moderate (0–17 grains m−3) in the central hospital and were low (<10 grains m−3) in both residential buildings. Indoor concentrations further from the main front door were low (<10 grains m−3) at all study sites. The concentrations of Betula pollen decreased substantially from outdoors to indoors, and further toward the centre of the building, probably indicating relatively poor penetrating properties of the pollen grains and/or the short-lived presence of pollen grains in indoor air. The concentrations of Betula pollen inside the buildings during the peak flowering period were mostly at a level barely inducing reactions even in the most sensitive persons.


Betula Exposure Indoor air Outdoor air Pollen grain Rotorod sampler 



Rotations per minute




Standard deviation



We thank Professor Jouni Jaakkola and Dr Kimmo Saarinen for their comments on the earlier draft and Dr Juha Jantunen for technical assistance with illustration.


  1. Cariñanos, P., Alcázar, P., Galán, C., Navarro, R., & Domínguez, E. (2004). Aerobiology as a tool to help in episodes of occupational allergy in work places. Journal of Investigational Allergology & Clinical Immunology, 14, 300–308.Google Scholar
  2. Clot, B. (2001). Airborne birch pollen in Neuchatel (Switzerland): Onset, peak and daily patterns. Aerobiologia, 17, 25–29.CrossRefGoogle Scholar
  3. Comtois, P., & Cagnon, L. (1988). Concentrations polliniques et fréquence des symptômes de pollinose: une méthode pour déterminer les seuils cliniques. Revue française d’allergologie, 28, 279–286.CrossRefGoogle Scholar
  4. D’Amato, G., Russo, M., Liccardi, G., Saggese, M., Gentili, M., Mistrello, G., D’Amato, M., & Falagiani, P. (1996). Comparison between outdoor and indoor airborne allergenic activity. Annals of Allergy, Asthma, and Immunology, 77, 147–152.Google Scholar
  5. D’Amato, G., Spieksma, F. T., Liccardi, G., Jager, S., Russo, M., Kontou-Fili, K., Nikkels, H., Wuthrich, B., & Bonini, S. (1998). Pollen-related allergy in Europe. Allergy, 53, 567–578.CrossRefGoogle Scholar
  6. Fahlbusch, B., Hornung, D., Heinrich, J., & Jäger, L. (2001). Predictors of group 5 grass-pollen allergens in settled dust: Comparison between pollination and nonpollination seasons. Allergy, 56, 1081–1086.CrossRefGoogle Scholar
  7. Frenz, D. A. (1999). Comparing pollen and spore counts collected with the rotorod Sampler and Burkard spore trap. Annals of Allergy, Asthma, and Immunology, 83, 341–349.Google Scholar
  8. Frenz, D. A. (2000). The effect of windspeed on pollen and spore counts collected with the rotorod sampler and burkard spore trap. Annals of Allergy, Asthma, and Immunology, 85, 392–394.Google Scholar
  9. Haahtela, T., Heiskala, M., & Suoniemi, I. (1980). Allergic disorders and immediate skin test reactivity in Finnish adolescents. Allergy, 35, 433–441.CrossRefGoogle Scholar
  10. Hirst, J. M. (1952). An automatic volumetric spore trap. Annals of Applied Biology, 39, 257–265.CrossRefGoogle Scholar
  11. Hjelmroos, M. (1991). Evidence of long-distance transport of Betula pollen. Grana, 30, 215–228.Google Scholar
  12. Holmquist, L., & Vesterberg, O. (1999). Quantification of birch and grass pollen allergens in indoor air. Indoor Air, 9, 85–91.CrossRefGoogle Scholar
  13. Holopainen, R., Asikainen, V., Pasanen, P., & Seppanen, O. (2002). The field comparison of three measuring techniques for evaluation of the surface dust level in ventilation ducts. Indoor Air, 12, 47–54.CrossRefGoogle Scholar
  14. Huurre, T. M., Aro, H. M., & Jaakkola, J. J. (2004). Incidence and prevalence of asthma and allergic rhinitis: A cohort study of Finnish adolescents. The Journal of Asthma, 41, 311–317.CrossRefGoogle Scholar
  15. Jones, N. C., Thornton, C. A., Mark, D., & Harrison, R. M. (2000). Indoor/outdoor relationship of particulate matter in domestic homes with roadside, urban and rural locations. Atmospheric Environment, 34, 2603–2612.CrossRefGoogle Scholar
  16. Käpylä, M. (1984). Diurnal variation of tree pollen in the air in Finland. Grana, 23, 167–176.Google Scholar
  17. Kilpeläinen, M., Terho, E. O., Helenius, H., & Koskenvuo, M. (2002). Childhood farm environment and asthma and sensitization in young adulthood. Allergy, 57, 1130–1135.CrossRefGoogle Scholar
  18. Korhonen, K. T., Heikkinen, J., Henttonen, H., Ihalainen, A., Pitkänen, J., & Tuomainen, T. (2006). Finland’s forest resources 2004–2005. Metsätieteen Aikakauskirja, 1B, 183–221 (In Finnish).Google Scholar
  19. Lee, T., Grinshpun, S. A., Martuzevicius, D., Adhikari, A., Crawford, C. M., Luo, J., & Reponen, T. (2006). Relationship between indoor and outdoor bio-aerosols collected with a button inhalable aerosol sampler in urban homes. Indoor Air, 16, 37–47.CrossRefGoogle Scholar
  20. Mäkinen, Y. (1981). Random sampling in the study of microscopic slides. Reports from the Aerobiology Laboratory, University of Turku, 5, 27–43.Google Scholar
  21. The Ministry of the Environment (ME). (1987/2003). National building code of Finland, D2. Indoor climate and ventilation in buildings. Regulations and guidelines. (Helsinki).Google Scholar
  22. Moverare, R., Petays, T., Vartiainen, E., & Haahtela, T. (2005). IgE reactivity pattern to timothy and birch pollen allergens in Finnish and Russian Karelia. International Archives of Allergy and Immunology, 136, 33–38.CrossRefGoogle Scholar
  23. Nilsson, S., Praglowski, J., & Nilsson, C. (1977). Atlas of airborne pollen grains and spores in Northern Europe. Bokförlaget Natur och Kultur, Ljungföretagen: Örebro.Google Scholar
  24. O’Rourke, M. K., & Lebowitz, M. D. (1984). A comparison of regional atmospheric pollen with pollen collected at and near homes. Grana, 23, 55–64.Google Scholar
  25. Pan-American Aerobiology Association—Standardized Protocols. Retrieved January 19, 2007, from = %22Gelvatol%22
  26. Puc, M., & Wolski, T. (2002). Betula and Populus pollen counts and meteorological conditions in Szczecin, Poland. Annals of Agricultural and Environmental Medicine, 9, 65–69.Google Scholar
  27. Rantio-Lehtimäki, A., Helander, M. L., & Karhu, K. (1992). Does cutting of mugwort stands affect airborne pollen concentrations? Allergy, 47, 388–390.CrossRefGoogle Scholar
  28. Rantio-Lehtimäki, A., Helander, M. L., & Pessi, A-M. (1991a). Circadian periodicity of airborne pollen and spores; significance of sampling height. Aerobiologia, 7, 129–135.CrossRefGoogle Scholar
  29. Rantio-Lehtimäki, A., Koivikko, A., Kupias, R., Mäkinen, Y., & Pohjola, A. (1991b). Significance of sampling height of airborne particles for aerobiological information. Allergy, 46, 68–76.CrossRefGoogle Scholar
  30. Rantio-Lehtimaki, A., Viander, M., & Koivikko, A. (1994). Airborne birch pollen antigens in different particle sizes. Clinical and Experimental Allergy, 24, 23–28.CrossRefGoogle Scholar
  31. Rasmussen, A. (2002). The effects of climate change on the birch pollen season in Denmark. Aerobiologia, 18, 253–265.CrossRefGoogle Scholar
  32. Raynor, G. S. (1972). Sampling particulates with rotating arm impaction samplers. In W. S. Benninghoff, & R. L. Edmonds (Eds.), Ecological system approaches to aerobiology. I Identification of component elements and their functional relationships. In: Proceedings of Workshop/Conference I, US/IBP Aerobiology Program Handbook Number 2 (pp. 82–105). The University of Michigan Ann Arbor, Michigan.Google Scholar
  33. Remes, S. T., Korppi, M., Kajosaari, M., Koivikko, A., Soininen, L., & Pekkanen, J. (1998). Prevalence of allergic rhinitis and atopic dermatitis among children in four regions of Finland. Allergy, 53, 682–689.CrossRefGoogle Scholar
  34. Riediker, M., Keller, S., Wuthrich, B., Koller, T., & Monn, C. (2000). Personal pollen exposure compared to stationary measurements. Journal of Investigational Allergology & Clinical Immunology, 10, 200–203.Google Scholar
  35. Rimpelä, A., Savonius, B., Rimpelä, M., & Haahtela, T. (1995). Asthma and allergic rhinitis among Finnish adolescents in 1977-1991. Scandinavian Journal of Social Medicine, 1, 60–65.Google Scholar
  36. Schäppi, G. F., Suphioglu, C., Taylor, P. E., & Knox, R. B. (1997). Concentrations of the major birch tree allergen Bet v 1 in pollen and respirable fine particles in the atmosphere. The Journal of Allergy and Clinical Immunology, 100, 656–661.CrossRefGoogle Scholar
  37. Seppänen, O. (1994). Air conditioning technology and indoor climate (pp. 275–278). Vantaa: Kirjapaino Kiitorata Oy: In Finnish.Google Scholar
  38. Sofiev, M., Siljamo, P., Ranta, H., & Rantio-Lehtimäki, A. (2006). Towards numerical forecasting of long-range air transport of birch pollen: Theoretical considerations and a feasibility study. International Journal of Biometeorology, 50, 392–402.CrossRefGoogle Scholar
  39. Solomon, W. R., Burge, H. A., & Boise, J. R. (1980b). Exclusion of particulate allergens by window air conditioners. The Journal of Allergy Clinical Immunology, 65, 305–308.CrossRefGoogle Scholar
  40. Solomon, W. R., Burge, H. A., Boise, J. R., & Becker, M. (1980a). Comparative particle recoveries by the retracting rotorod, rotoslide and burkard spore trap sampling in a compact array. International Journal of Biometeorology, 24, 107–116.CrossRefGoogle Scholar
  41. Sterling, D. A., & Lewis, R. D. (1998). Pollen and fungal spores indoor and outdoor of mobile homes. Annals of Allergy, Asthma, and Immunology, 80, 279–285.CrossRefGoogle Scholar
  42. Stock, T. H., & Morandi, M. T. (1988). A characterization of indoor and outdoor microenvironmental concentrations of pollen and spores in two Houston neighbourhoods. Environment International, 14, 1–9.CrossRefGoogle Scholar
  43. Taylor, P. E., Flagan, R. C., Miguel, A. G., Valenta, R., & Glovsky, M. M. (2004). Birch pollen rupture and the release of aerosols of respirable allergens. Clinical and Experimental Allergy, 34, 1591–1596.CrossRefGoogle Scholar
  44. The Finnish Pollen Bulletin Summary Vol. 30. (2005). (Turku: Aerobiology Unit, University of Turku, Finland).Google Scholar
  45. Vartiainen, E., Petays, T., Haahtela, T., Jousilahti, P., & Pekkanen, J. (2002). Allergic diseases, skin prick test responses, and IgE levels in North Karelia, Finland, and the Republic of Karelia, Russia. The Journal of Allergy and Clinical Immunology, 109, 643–648.CrossRefGoogle Scholar
  46. Viander, M., & Koivikko, A. (1978). The seasonal symptoms of hyposensitized and untreated hay fever patients in relation to birch pollen counts: Correlations with nasal sensitivity prick test and RAST. Clinical Allergy, 8, 387–396.CrossRefGoogle Scholar
  47. Yli-Panula, E., & Ahlholm, J. (1998). Prolonged antigenic activity of birch and grass pollen in experimental conditions. Grana, 37, 180–184.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.South Karelia Allergy and Environment InstituteJoutsenoFinland
  2. 2.Department of BiologyUniversity of TurkuTurkuFinland

Personalised recommendations