, 23:59 | Cite as

Airborne dust, bacteria, actinomycetes and fungi at a flourmill

  • Abdel Hameed A. AwadEmail author
Original Paper


A study was carried out on suspended dust, bacterial and fungal aerosols in a four-storey flourmill building located in Giza, Egypt. Airborne microorganisms were quantitatively isolated using liquid impinger and gravimetric samplers during the period from March 2004 to February 2005. Suspended dust varied from 1.96 to 16.3 mg m−3 and 0.69 to 1.8 mg m−3 in the indoor and outdoor environments, respectively. Suspended dust was significantly greater (P < 0.05) at bran package, double roller, purifiers and flour storage units in comparison to the outdoor reference site. The dust levels exceed the occupational exposure limit (OEL) of 0.5 mg m−3 for flour dust. Airborne microbial counts were found at median values, between sampling locations, ranged from 0 to >104 CFU m−3. Gram-negative bacteria were found in small numbers (0–102 CFU m−3). The highest concentration of actinomycetes (>103 CFU m−3) was detected in the storage unit. Airborne fungal counts were found at the median values, between sampling locations, varied from 103 to 104 CFU m−3. The counts of airborne bacteria and fungi were significantly greater (P < 0.05) at the purifiers and double roller mill units in comparison to the outdoor reference site using the liquid impinger sampler. Microbial levels associated with bulk deposited dust averaged between 105 and 106 CFU g−1. Alcaligenes (5.4%) Pseudomonas (3.87%) and Enterobacter (3.1%) were the predominant Gram-negative species while Bacillus (29.4%) and Micrococci (13.9%) were the major components of Gram-positive bacteria. Aspergillus and Penicillium were the predominant fungal types indoor whereas Cladosporium (35.2%) and Aspergillus species (22.2%) were the predominant fungal types outdoor. A number of allergenic and toxigenic bioaerosols were found in the flourmill workplace.


Flourmill Air quality Suspended dust Bacteria Actinomycetes Fungi 



Colony forming unit per plate per hour

CFU m−3

Colony forming unit per cubic meter


Occupational exposure limit


Aerodynamic diameter


All-glass impinger


  1. Abdel Hameed, A. A. (2005). Vegetation: A source of air fungal contaminant. Aerobiologia, 21, 53–61.CrossRefGoogle Scholar
  2. Abdel Hameed, A. A, & Khoder, M. I. (2001). Suspended particulates and bioaerosols emitted from an agricultural non-point source. JEM, 3, 206–209.CrossRefGoogle Scholar
  3. Abdel Hameed, A. A., Shakour, A., & Yasser, H. I. (2003). Evaluation of bioaerosols at an animal feed manufacturing industry: A case study. Aerobiologia, 19, 89–95.CrossRefGoogle Scholar
  4. American Conference of Governmental Industrial Hygienists, ACGIH. (1989). Step two: on-site investigation, pp. 1–8, fungi, pp. 1–10, Bacteria, pp. 1–7. In Committee on Bioaerosols (Eds.), Guidelines for the assessment of bioaerosols in the indoor environment. Cincinnati, OH: American Conference of Governmental Industrial Hygienists.Google Scholar
  5. Aydogdu, H., Asan, A., Otkum, M.T., & Ture, M. (2005). Monitoring of fungi and bacteria in the indoor air of primary schools in Edirne city, Turkey. Indoor Built Environment, 14(5), 411–425.CrossRefGoogle Scholar
  6. Barnett, H. L., & Hunter, B. B. (1999). Illustrated genera of imperfect fungi (4th ed.). St. Paul, MN: The American Phytopathological Society, APS, 218 pp.Google Scholar
  7. Burge, H. (1989). Airborne allergenic fungi: Classification, nomenclature, and distribution. Immunology and Allergy Clinics of North America, 9(2), 307–319.Google Scholar
  8. Chan-Yeung, M., Enarson, D. A., & Kennedy, S. M. (1992). The impact of grain dust on respiratory health. The American Review of Respiratory Disease, 145, 476–487.Google Scholar
  9. Clark, S. (1986). Report on prevention and control. American Journal of Industrial Medicine, 10, 267–273.Google Scholar
  10. Cown, W. B., Kethley, T. W., & Fincher, E. L. (1957). The critical orifice liquid as a sampler for bacterial aerosols. Applied Microbiology, 5, 119–124.Google Scholar
  11. Crook, B., Venables, K. M., Lacey, J., Musk, A. W., & Newman Taylor, A. J. (1988). Dust exposure and respiratory symptoms in a UK bakery. In W. D. Griffiths (Ed.), Aerosol: Their generation, behaviour and application (pp. 341–345). Aerosol Society Second Conference, Aerosol Society, London.Google Scholar
  12. Desai, M. R., & Ghosh, S. K. (2003). Occupational exposure to airborne fungi among rice mill workers with special reference to aflatoxin producing. A. flavus strains. Annals of Agricultural and Environmental Medicine, 10, 159–162.Google Scholar
  13. DeLucca, A. J., Godshall, M. A., & Palmgren, M. S. (1984). Gram-negative bacterial endotoxins in grain elevator dusts. American Industrial Hygiene Association Journal, 45, 336–339.Google Scholar
  14. Dutkiewicz, J. (1978). Exposure to dust-borne bacteria in agriculture. I. Environmental studies. Archives of Environmental Health, 33, 250–259.Google Scholar
  15. Dutkiewicz, J. (1986). Microbial hazards in plants processing grain and herbs. American Journal of Industrial Medicine, 10, 300–302.Google Scholar
  16. Dutkiewicz, J., Kus, L., Dutkiewicz, E., & Warren, C. P. W. (1985). Hypersensitivity pneumonitis in grain farmers due to sensitization to Erwinia herbicola. Annals of Allergy, 54, 65–68.Google Scholar
  17. Dutkiewicz, J., Olenchock, S. A., Sorenson, W. G., Gerencser, V. F., May, J. J., Pratt, D. S., & Robinson, V. A. (1989). Levels of bacteria, fungi and endotoxin in bulk and aerosolized corn silage. Applied and Environmental Microbiology, 55, 1093–1099.Google Scholar
  18. Dutkiewicz, J., Krysiñska-Traczyk, E., Skórska, C., Sitkowska, J., Prażmo, Z., & Urbanowicz, B. (2000). Exposure of agricultural workers to airborne microorganisms and endotoxin during handling of various vegetable products. Aerobiologia, 16, 193–198.CrossRefGoogle Scholar
  19. Eduard, W. (1997). Exposure to non-infectious microorganisms and endotoxins in agriculture. Annals of Agricultural and Environmental Medicine, 4, 179–186.Google Scholar
  20. Gòrny, R. L., & Dutkiewicz, J. (2002). Bacterial and fungal aerosols in indoor environment in central and eastern European countries. Annals of Agricultural and Environmental Medicine, 9, 17–23.Google Scholar
  21. Gregory, S. (1963). Statistical methods and geographer (1st ed., pp. 121–184). London: Longmans.Google Scholar
  22. Hirvonen, M. R., Nevalainen, A., Makkonen, M., Mönkkönen, J. & Savolainen, K. (1997). Streptomycetes spores from mouldy houses induce nitric oxide, TNFx and IL-6 secretion from RAW264.7 macrophage cell line without causing subsequent cell death. Environmental Toxicology and Pharmacology, 1, 57–63.CrossRefGoogle Scholar
  23. Hocking, A. D. (2003). Microbiological facts and fictions in grain storage. In E. J. Wright, M. C Webb, & E. Highley (Eds.), Stored grain in Australia. Proceedings of the Australian Postharvest Technical Conference, Canberra, 25–27 June, 2003. CSIRO Stored Grain Research Laboratory, Canberra.Google Scholar
  24. Jensen, P. A., Lighthart, B., Mohr, A. J., & Shaffer, B. T. (1994). Instrumentation used with microbial bioaerosol. In B. Lighthart & A. J. Mohr (Eds.), Atmospheric microbial aerosol theory and applications (pp. 226–284). New York, NY: Chapman and Hall.Google Scholar
  25. Jothish, P. S., & Nayar, T. S. (2004). Airborne fungal spores in a sawmill environment in Palakkad district, Kerala, India. Aerobiologia, 20, 75–81.CrossRefGoogle Scholar
  26. Karpinski, E. A. (2003). Exposure to inhalable dust in Canadian flourmill. Applied Occupational and Environmental Hygiene, 18(12), 1022–1030.Google Scholar
  27. Krysinska-Traczyk, E. (1992). Oceno znaczenia gatunku Aspergillus candidus jako czynnika narazenia zawodowego w rolnictwie na podstawie badan aerobiologicznych I immunologogicznych. Med Wiejska, 27, 131–141.Google Scholar
  28. Lacey, J. (1980). The microflora of grain dusts. In J. A. Dosman & D. J. Cotton (Eds.), Occupational pulmonary disease: Focus on grain dust and health (pp. 189–200). London: Academic Press Inc.Google Scholar
  29. Lacey, J. (1989). In S. T. William, M. E. Sharpe, & J. G. Holt (Eds.), Bergey’s Manual of Systematic Bacteriology (Vol. 4, pp. 2573–2585). Baltimore, M.D: Williams and Wilkins.Google Scholar
  30. Lacey, J., & Crook, B. (1988). Review: Fungal and actinomycetes spores as pollutants of the workplace and occupational allergens. The Annals of Occupational Hygiene, 32(4), 515–533.CrossRefGoogle Scholar
  31. Lacey, J., & Dutkiewicz, J. (1994). Bioaerosols and occupational lung disease. Journal of aerosol science, 25, 1371–1404.CrossRefGoogle Scholar
  32. Lugauskas, A., Krikstaponis, A., & Sveistyte, L. (2004). Airborne fungi in industrial environments—potential agents of respiratory diseases. Annals of Agricultural and Environmental Medicine, 11, 19–25.Google Scholar
  33. Macher, J., Chatigny, M., & Burge, H. (1995). Sampling airborne microorganisms and aeroallergens. In B. Cohen & S. Hering (Eds.), Air sampling instruments for evaluation of atmospheric contaminants (8th ed., pp. 589–617). Cincinnati, OH: ACGIH.Google Scholar
  34. Malmberg, P., Rask-Andersen, A., Lundholm, M., & Palmgren, U. (1990). Can spores from molds and actinomycetes cause an organic dust toxic syndrome reaction? American Journal of Industrial Medicine, 17, 109–110.Google Scholar
  35. Malmros, P., Sigsgaard, T., Bach, B. (1992). Occupational health problems due to garbage sorting. Waste Management and Research, 10, 227–234.CrossRefGoogle Scholar
  36. Meo, S. A. (2004). Dose responses of years of exposure on lung functions in flourmill workers. Journal of Occupational Health, 46, 187–191.CrossRefGoogle Scholar
  37. Morey, P., Otten, J., Burge, H., Chatingy, M., Feeley, J., LaForce, F. M., & Peterson, K. (1986). Airborne viable microorganisms in office environments: sampling protocol and analytical procedures. Applied Industrial Hygiene, 1, R19–R23.Google Scholar
  38. Musk, A. W., Venables, K. M., Crook, B., Nunn, A. J., Hawkins, R., Crook, G.D., Graneek, B. J., Tee, R. D., Farrer, N., Johnson, D. A., Gordon, D. J., Darbyshire, J. H., & Newman Taylor, A. J. (1989). Respiratory symptoms, lung function and sensitization to flour in a British bakery. British Journal of Industrial Medicine, 46, 636–642.Google Scholar
  39. Narayn, M. C. J., Ravichandran, V., & Sullia, S. B. (1982). Aeromycology of the atmosphere of Malleswaram market, Bangalore. Acta Botanica Indica, 10, 196–200.Google Scholar
  40. Nieuwenhuijsen, M. J., Sandiford, C. P., Lowson, D., Tee, R. D., Venables, K. M., McDonald, J.C., & Newman Taylor, A. J. (1994). Dust and flour aeroallergen exposure in flourmills and bakeries. Occupational and Environmental Medicine, 51(9), 584–588.CrossRefGoogle Scholar
  41. Olenchock, S. A. (1990). Endotoxin in various work environments in agriculture. Developments in Industrial Microbiology, 13, 193–197.Google Scholar
  42. Pandit T., Singh S., & Singh A. B. (1995). Prevalence of culturable and non-culturable airborne fungi in grain store in Delhi. Aerobiologia, 11, 177–182.CrossRefGoogle Scholar
  43. Pelczar, M. J., Chan, E. C. S., & Krieg, N. R. (1993). Microbiology: Concepts and applications. New York: Mc Graw Hill Inc., 966 pp.Google Scholar
  44. Rylander, R. (1994). Organic dusts and lung diseases: The role of inflammation. Annals of Agricultural and Environmental Medicine, 1, 7–10.Google Scholar
  45. Rylander, R., & Jacobs, R. R. (1994). Organic dusts, exposure, effects and prevention. Boca Raton, FL: CRC Press, Inc.Google Scholar
  46. Singh A., & Sing A. B. (1994). Airborne fungi in a bakery and the prevalence of respiratory dysfunction among workers. Grana, 33, 349–358.CrossRefGoogle Scholar
  47. St-Germain, G., & Summerbell, R. (1996). Identifying filamentous fungi. A clinical laboratory handbook. Belmont: Star Publishing Co.Google Scholar
  48. Sumi, Y., Takeuchi, M., Miyakawa, M., & Nagura H. (1994). Granulomatous lesions in lung induced by inhalation of mold spores. Virchows Archives, 424(6), 661–668.CrossRefGoogle Scholar
  49. Surekha, M., Krishnareddi, V., & Reddi, S. M. (1996). Aeromycoflora of poultry shed in relation to incidence of mycotoxigenic fungi. Journal of Palynology, 32, 135–141.Google Scholar
  50. Swan, J. R. M., & Crook, B. (1998). Airborne microorganisms associated with grain handling. Annals of Agricultural and Environmental Medicine, 5, 7–15.Google Scholar
  51. Szponar, B., & Larsson, L. (2001). Use of mass-spectrometry for characterizing microbial communities in bioaerosols. Annals of Agricultural and Environmental Medicine, 8, 111–117.Google Scholar
  52. Taytard, A., Tessier, J. F., Vergeret, J., Pellet, F., Faugere, J. G., Gachie, J. P., Beziau, F., kombou, L., Fontan, J., Redon, S., Rio, P., & Freour, P. (1988). Respiratory function in flourmill workers. European Journal of Epidemiology, 4(10), 104–109.CrossRefGoogle Scholar
  53. Vanderzent, C., & Nickelson, R. (1969). A microbiological examination of muscle tissue of beef, pork and lamb carcasses. Journal of Milk and Food Technology, 32, 357–361.Google Scholar
  54. Waksman, S. A. (1967). Actinomycetes. New York: The Ronald Press Company.Google Scholar
  55. Wang, Z., Reponen, T., Grinshpun, S. A., Gorny, R. L., & Willeke, K. (2001). Effect of sampling time and air humidity on bioefficiency of filter samplers for bioaerosol collection. Journal of Aerosol Science, 32, 661–674.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Air Pollution DepartmentNational Research CenterDokki, GizaEgypt

Personalised recommendations