, Volume 22, Issue 3, pp 197–210

Preliminary survey of indoor and outdoor airborne microfungi at coastal buildings in Egypt

Original Paper


Forty six species and two sterile fungi and yeast species were isolated from samples collected both indoors and outdoors of coastal buildings located in an Egyptian coastal city. Twenty flats from ten buildings were investigated; children living in these buildings have been reported to suffer from respiratory illnesses. Samples were taken using a New Brunswick sampler (model STA-101) operating for 3.0 min at a flow rate of 6.0 l/min. Most of the species isolated have been associated with symptoms of respiratory allergies. Indoors the total culturable fungal count was 1548 CFU/m3; outdoors, it was 1452 CFU/m3. Indoor values of culturable fungal count, total spores count and ergosterol content ranged from 52 to 124 CFU/m3, 100 to 400 spore/m3 and 5 to 27.7 mg/m3, respectively, whereas outdoor levels typically varied between 25 and 222 CFU/m3, 110 and 900 spore/m3 and 3.3 and 67.2 mg/m3, respectively. The maxima for these parameters were detected indoors in house no. 6 and outdoors, outside of house no. 7. The most abundant species were primarily mitosporic (2832 CFU/m3). The most frequent species in both the indoor and outdoor samples were Cladosporium cladosporioides followed by Alternaria alternata and Penicillium chrysogenum,with inside:outside ratios of 1.4, 1.8 and 1.9, respectively. The patterns of fungal abundance were influenced to some extent by changes in the relative humidity and temperature. Other factors, such as type of culture media, rate of sedimentation, size, survival rates of spore and species competition,also affected fungal counts and should be taken into consideration during any analysis of bioaerosol data.


Airborne viable fungi Egypt Ergosterol content New Damietta Total spore count 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-Subai, A. A. T. (2002). Air-borne fungi at Doha, Qatar. Aerobiologia, 18, 175–183.CrossRefGoogle Scholar
  2. Al-Suwaine, A. S., Hasnain, S. M., & Bahkali, A. H. (1999). Viable airborne fungi in Riyadh, Saudi Arabia. Aerobiologia, 15, 121–130.CrossRefGoogle Scholar
  3. Andersen, B., & Nissen, A. T. (2000). Evaluation of media for detection of Stachybotrys and Chaetomium species associated with water-damaged buildings. International Biodeterioration and Biodegradation, 46, 111–116.CrossRefGoogle Scholar
  4. Anderson, K., Morris, G., & Kennedy, H. (1996). Aspergillosis in immunocompromised paediatric patients: Associations with building hygiene, design, and indoor air. Throax, 51, 256–261.Google Scholar
  5. Billups, R. A., Tilton, K. S., & Warden, P. S. (1999). Identification of Stachybotrys chartarum utilizing various media and two temperature settings. In: First NSF International Conference on Indoor Air Health (pp. 166–174), Denver, Colo.Google Scholar
  6. Bjurman, J. (1994). Ergosterol as an indicator of mould growth on wood in relation to culture age, humidity stress and nutrient level. International Biodeterioration and Biodegradation, 33, 355–368.CrossRefGoogle Scholar
  7. Bogacka, E. (1997). Sick building syndrome. Mikologia Lekarska, 4, 233–237.Google Scholar
  8. Botzenhart, K., Altenhoff, K., & Leithold, T. H. (1984). Molds in the air of greenhouse homes. In B. Seiferrt, H. Esdorn, M. Fischer, H. Ruden, & J. Wegner (Eds.), Indoor air sensitivity and hyperactivity, reactions to sick buildings (Vol. 84, pp. 277–82). Stockholm, Sweden: Swedish Council for Building Research.Google Scholar
  9. Burge, H. (1990). Bioaerosols: prevalence and health effects in the indoor environment. The Journal of Allergy and Clinical Immunology, 86, 687–701.CrossRefGoogle Scholar
  10. Burhan, E. N., & Asan, A. (2001). Airborne fungi in vegetable growing areas of Edirne, Turkey. Aerobiologia, 17, 69–75.CrossRefGoogle Scholar
  11. Chatigny, M. A., Dimmick, R. L., & Harrington, J. B. (1979). Aerobiology: The ecological systems approach. Dowden, Hutchinson and Ross, Stroudsberg, Pa. US/IBP Synthesis Series, 10, 111–150.Google Scholar
  12. Cooley, J. D., Wong, W. C., Jumper, C. A., & Straus, D. C. (1998). Correlation between the prevalence of certain fungi and sick building syndrome. Occupational and Environmental Medicine, 55, 579–584.Google Scholar
  13. Cosentino S., Pisano P. L., Fadda M. E., & Palmas, F. (1990). Pollen and mold allergy: Aerobiologic survey in the atmosphere of Cagliari, Italy 1986–1988. Annals of Allergy, 65, 393.Google Scholar
  14. Cox, C. S., & Wathes C. M. (1995). Bioaerosols handbook. New York: Lewis Publishers.Google Scholar
  15. Cuijpers, C. E. J., Swaen, G. M. H., Wesseling, G., Sturmans, F., & Wouters, E. F. M. (1995). Adverse effects of the indoor environment on respiratory health in primary school children. Environmental Research, 68, 11–23.CrossRefGoogle Scholar
  16. Dales, R. E., Burnett, R., & Zwanenburg, H. (1991). Adverse health effects among adults exposed to home dampness and molds. The American Review of Respiratory Disease, 143, 505–509.Google Scholar
  17. DeKoster, J. A., & Thorne, P. S. (1995). Bioaerosol concentrations in noncomplaint, complaint, and intervention homes in the midwest. American Industrial Hygiene Association Journal, 56, 573–580.Google Scholar
  18. Fanga, Z., Ouyanga, Z., Hub, L., Wanga, X., Zhenga, H., & Lina, X. (2005). Culturable airborne fungi in outdoor environments in Beijing, China. Science of the Total Environment, 350, 47–58.Google Scholar
  19. Fung, F., Clark, R., & Williams, S. (1998). Stachybotrys, a mycotoxinproducing fungus of increasing toxicologic importance. Clinical Toxicology, 36, 79–86.CrossRefGoogle Scholar
  20. Flannigan, B. (1992). Indoor microbiological pollutants-sources, species, characterisation and evaluation. In H. Knoppel, & P. Wolkoff (Eds.), Chemical, microbiological, health and comfort aspects of indoor air␣quality gate of the art in SBS (pp. 733–798). Dordrecht: Kluwer.Google Scholar
  21. Flannigan, B. (1997). Air sampling for fungi in indoor environments. Journal of Aerosol Science, 28, 381–392CrossRefGoogle Scholar
  22. Flannigan, B., & Hunter, C. A. (1988). Factors affecting airborne moulds in domestic dwellings. In: R. Perry, & P. W. Kirk (Eds). Indoor and ambient air quality selper (pp. 461–468). London.Google Scholar
  23. Flannigan, B., & Miller, J. D. (1994). Health implications of fungi in indoor environments—an overview. In R.␣A. Samson, B. Flannigan, M. E. Flannigan, A. P. Verhoeff, O. C. G. Adan, & E. S. Hoekstra (Eds.), Health implications of fungi in indoor environments (pp. l–28). Amsterdam: Elsevier.Google Scholar
  24. Flannigan, B., McCabe, E. M., & McGarry, F. (1991). Allergic and toxigenic micro-organisms in houses. Journal of Applied Bacteriology Symposium Supplement, 70, 61S–73S.Google Scholar
  25. Flannigan, B., McCabe, E. M., Jupe, S. V., & Jeffrey, I. G. (1993) Mycological and acaralogical investigation of complaint and non-complaint houses in Scotland. In Indoor Air ‘93, Proc 6th Int. Conf on Indoor Air Quality and Climate Indoor Air ‘93 (pp. 143–148). Helsinki.Google Scholar
  26. Flannigan, B., McCabe E. M., & Jupe, S. V. (1996). Quantification of air- and dust-borne deteriogenic microorganisms in homes. In W. Sard (Ed.), Proc. 10th Biodeterioration and Biodegradation Symp (pp.␣377–384). Dechema, Frankfurt am Main.Google Scholar
  27. Fradkin, A., Tobin, R. S., Tarlo, S. M., Tucic-Poretta, M., & Mallock, D. (1987). Species identification of airborne molds and its significance for the detection of indoor pollution. Japca, 35, 51–53.Google Scholar
  28. Garrison, R. A., Robertson, L. D., Koehn, R. D., & Wynn, S. R. (1993). Effect of heating-ventilation-air conditioning system sanitation on airborne fungal populations in residential environments. Annals of Allergy, 71, 548–556.Google Scholar
  29. Gessner, M. O., & Chauvet, E. (1993). Ergosterol-to- biomass conversion factors for aquatic hyphomycetes. Applied Environmental Microbiology, 59, 502–507.Google Scholar
  30. Gniadek, A, Macura, A. B., Oksiejczuk, E., Krajewska-Kulak, E., & Lukaszuk, C. (2005). Fungi in the air of selected social welfare homes in the Malopolskie and Podlaskie provinces—a comparative study. International Biodeterioration and Biodegradation, 55, 85–91.CrossRefGoogle Scholar
  31. Godish, T. (1995). Sick buildings: Definition, diagnosis and mitigation. Boca Raton: Lewis Publishers.Google Scholar
  32. Grant, C., Hunter, C. A., Flannigan, B., & Bravery, A. F. (1989). Water activity requirements of moulds isolated from domestic dwellings. International Biodeterioration and Biodegradation, 25, 259–284.CrossRefGoogle Scholar
  33. Gutarowska, B. (1999). Ergosterol as an indicator of degree of mould’s contamination of plant materials. PhD thesis, Technical University, lrodrz, Poland.Google Scholar
  34. Gutarowska, B., & Zakowska, Z. (2002). Elaboration and application of mathematical model for estimation of mould contamination of some building materials based on ergosterol content determination. International Biodeterioration and Biodegradation, 49, 299–305.CrossRefGoogle Scholar
  35. Halwagy, M. (1989). Seasonal airspora at three sites in Kuwait 1977–1982. Mycological Research, 93, 208.Google Scholar
  36. Hargreaves, M, Parappukkaran, S, Morawska, L, Hitchins, J, He, C, & Gilbert, D. (2003). A pilot investigation into associations between indoor airborne fungal and non-biological particle concentrations in residential houses in Brisbane, Australia. The Science of the Total Environment, 312, 89–101.CrossRefGoogle Scholar
  37. Henríquez, V. I., Villegas, G. R., & Nolla, J. M. R. (2001). Airborne fungi monitoring in Santiago. Chile Aerobiologia, 17, 137–142.CrossRefGoogle Scholar
  38. Herbarth, O., Schlink, U., Muller, A., & Richter, M. (2003). Spatiotemporal distribution of airborne mould spores in apartments. Mycology Research, 107, 1361–1371.CrossRefGoogle Scholar
  39. Hirsh, S. R., & Josman, J. A. (1976). A one year survey of mold growth inside twelve homes. Annals of Allergy, 36, 30–38.Google Scholar
  40. Horner, W. E., Helbling, A., Salvaggio, J. E., & Lehrer, S. B. (1995). Fungal allergens. Clinical Microbiology Reviews, 8, 161–179.Google Scholar
  41. Howard, D. H., & Howard, L. F. (1983). Fungi pathogenic for humans and animals. New York: Marcel Dekker.Google Scholar
  42. Hu, F. B., Persky, V., Flay, B. R., & Richardson, J. (1997). An epidemiological study of asthma prevalence and related factors among young adult. British Medical Journal, 34, 67–76.Google Scholar
  43. Hunter, C. A., Grant, C., Flannigan, B., & Bravery, A. F. (1988). Mould in buildings: The air spora of domestic dwellings. International Biodeterioration, 24, 81–101.CrossRefGoogle Scholar
  44. Jensen, P. A., & Schafer, M. P. (1998). Sampling and characterization of bioaerosols. In NIOSH manual of analytical methods. Method 0800, Issue 1. pp. 82–112.Google Scholar
  45. Kalogerakisa, N., Paschalia, D., Lekaditisa, V., Pantidoua, A., Eleftheriadisb, K., & Lazaridisc, M. (2005). Indoor air quality—bioaerosol measurements in domestic and office premises. Journal of Aerosol Science, 36, 751–761.Google Scholar
  46. Koch, A., Heilemann, K. J., Bischof, W., Heinrich, J., &␣Wichmann, H. E. (2000). Indoor viable mold spores—a comparison between two cities, Erfurt (eastern Germany) and Hamburg (western Germany). Allergy, 55, 176–180.CrossRefGoogle Scholar
  47. Kowalski, W., & Bahnfleth, W. P. (1998). Airborne respiratory diseases and technologies for control of microbes. HPAC 70.Google Scholar
  48. Kozak, P. P., Gallup, J., Cummins, L.H., & Gillman, S. A. (1979). Factors of importance in determining the prevalence of indoor molds. Annals of Allergy, 43, 88–94.Google Scholar
  49. Lacap, D. C., Liew, E. C. Y., & Hyde K. D. (2003). An evaluation of the fungal ‘morphotype’ concept based on ribosomal DNA sequences. Fungal Diversity, 12, 53–66.Google Scholar
  50. Lara, T. J. M., Tessier, J. F., & Lafont-Grellety, J. (1990). Indoor moulds in asthmatic patients homes. Aerobiologia, 6, 98.CrossRefGoogle Scholar
  51. Lehtonen, M., Reponen, T., & Nevalainen, A. (1993). Everyday activities and variation of fungal spore concentrations in indoor air. International Biodeterioration and Biodegradation, 31, 25–39.CrossRefGoogle Scholar
  52. Lundqvist, G. R., Aalykke, C., & Bonde G. J. (1990). Evaluation of children as sources of bioaerosols in a climate chamber study. Environment International, 16, 213–218.CrossRefGoogle Scholar
  53. Macura, A. B., & Gniadek, A. (2000). Fungi present in the indoor environment of a social welfare home. Preliminary study. Mikologia Lekarska, 7, 13–17.Google Scholar
  54. Magan, N. (1993). Early detection of mould growth in stored grain. Aspects of Applied Biology, 36, 417–426.Google Scholar
  55. Matcham, E., Jordan, B. R., & Wood, D. A. (1985). Estimation of fungal biomass in a solid substrate by three independent methods. Applied Microbiology and Biotechnology, 21, 108–112.CrossRefGoogle Scholar
  56. Medrela-Kuder, E. (2003). Seasonal variations in the occurrence of culturable airborne fungi in outdoor and indoor air in Cracow. International Biodeterioration and Biodegradation, 52, 203–205.CrossRefGoogle Scholar
  57. Mille-Lindblom, C., von Wachenfeldt, E., & Tranvik, L. J. (2004). Ergosterol as a measure of living fungal biomass: persistence in environmental samples after fungal death. Journal of Microbiological Methods, 59, 253–262.CrossRefGoogle Scholar
  58. Muilins, J., Harvey, R., & Seaton, A. (1976). Sources and incidence of airborne Aspergillus fumigatus (Fres). Clinical Allergy, 6, 209–217.CrossRefGoogle Scholar
  59. Nielsen, K. F., Holm, G., Uttrup, L. P., & Nielsen, P. A. (2004) Mould growth on building materials under low water activities. Influence of humidity and temperature on fungal growth and secondary metabolism. International Biodeterioration and Biodegradation, 54, 325–336.Google Scholar
  60. Nilsson, A., Kihlstrom, E., Lagesson, V., Wessen, B., Szponar, B., Larsson, L., & Tagesson C. (2004). Microorganisms and volatile organic compounds in airborne dust from damp residences. Indoor Air, 14, 74–82.CrossRefGoogle Scholar
  61. Nikulin, M., Pasanen, A. L., Berg, S., & Hintikka, E. L. (1994). Stachybotrys atra growth and toxin production in some building materials and fodder under different relative humidity. Applied and Environmental Microbiology, 60, 3421–3424.Google Scholar
  62. Palska, St D., Harmata, K., Kasprzyk, I., Myszkowska, D., & Stach, A. (1999). Occurrence of airborne Cladosporium and Alternaria spores in Southern and Central Poland in 1995–1996. Aerobiologia, 15, 39–47.CrossRefGoogle Scholar
  63. Pasanen, A-L., Kalliokoski, P., Pasanen, P., Salmi, T., & Tossavainen, A. (1989). Fungi carried from farmer’s work into farm homes. American Industrial Hygiene Association Journal, 50, 631–633.Google Scholar
  64. Pasanen, A-L., Pasanen, P., Jantunen, M. J., & Kalliokoski, P. (1991). Significance of air humidity and air velocity for fungal spore release into the air. Atmospheric Environment, 25A, 459–462.Google Scholar
  65. Pasanen, A-L., Heinonen-Tanski, H., Kalliokoski, P., & Jantunen, M. J. (1992). Fungal micro-colonies on indoor surfaces-an explanation for the base level fungal spore counts in indoor air. Atmospheric Environment, 26B, 117–120.Google Scholar
  66. Pasanen, A., Yli-Pietila, K., Pasanen, P., Kalliokoski, P., & Tarhanen, J. (1999). Ergosterol content in various fungal species and biocontaminated building materials. Applied and Environmental Microbiology, 65, 138–142.Google Scholar
  67. Pei-Chih, W., Huey-Jenu, S., & Chia-Yin, L. (2000). Characteristics of indoor and outdoor airborne fungi at suburban and urban homes in two seasons. The Science of the Total Environment, 253, 111–118.CrossRefGoogle Scholar
  68. Picco, A. M., & Rodol, M. (2000). Airborne fungi as biocontaminants at two Milan underground station. International Biodeterioration and Biodegradation, 45, 43–47.CrossRefGoogle Scholar
  69. Pope, A. M., Patterson, R., & Burge, H. (1993). Indoor Allergens. Washington D.C.: National Academy Press.Google Scholar
  70. Ren, P., Jankun, T. M., Belanger, K., Bracken, M. B., & Leaderer, B. P. (2001). The relation between fungal propagules in indoor air and home characteristics. Allergy, 56, 419–424.CrossRefGoogle Scholar
  71. Reponen, T., Nevalainen, A., Jantunen, M., Pellikka, M., & Kalliokoski, P. (1992). Normal range criteria for indoor air bacteria and fungal spores in a subarctic climate. Indoor Air, 2, 26–31.CrossRefGoogle Scholar
  72. Ross, M. A., Curtis, L., Scheff, P. A., Hryhorczuk, D. O., Ramakrishnan, V., Wadden, R. A., & Persky, V. W. (2000). Association of asthma symptoms and severity with indoor bioaerosols. Allergy, 55, 705–711.CrossRefGoogle Scholar
  73. Samson, R. A. (1994). Health implications of fungi in indoor environments. Amsterdam: Elsevier: Google Scholar
  74. Samson, R. A., Flannigan, B., Flannigan, M. E., Verhoe, A. P., Adan, O. C. G., & Hoekstra, E. S. (1994). Recommendations. In R. A. Samson, B. Flannigan, M. E. Flannigan, A. P. Verhoe, O. C. G. Adan, & E. S. Hoekstra (Eds.), Health implications of fungi in indoor environments (pp. 531–538). Amsterdam: Elsevier.Google Scholar
  75. Saraf, A., Larsson, L., Burge, H., & Milton, D. (1997). Quantification of ergosterol and 3-hydroxy fatty acids in settled house dust by gas chromatography-mass spectrometry: comparison with fungal culture and determination of endotoxin by Limulus amebocyte lysate assay. Applied and Environmental Microbiology, 63, 2554–2559.Google Scholar
  76. Schnpurer, J. (1991). Distribution of fungal biomass among fine bran, coarse bran, and gour from wheat stored at four deferent moisture levels. Cereal Chemistry, 68, 434–437.Google Scholar
  77. Seitz, L. M., Sauer, D. B., Burroughs, R., Mohr, H. E., & Hubbard, J. D. (1979). Ergosterol as a measure of fungal growth. Phytopathology, 69, 1202–1203.Google Scholar
  78. Tan, T. K., & Leong, W. F. (1989). Succession of fungi on wood of Avicennia alba and A. lanata in Singapore. Canadian Journal of Botany, 67, 2686–2691.CrossRefGoogle Scholar
  79. Verhoeff, A. P., Van Wijnen, J. H., Brunekreef, B., Fischer, P., Van Reenenhoekstra, E. S., & Samson, R. A. (1992). The presence of viable mold propagules in indoor air in relation to home dampness and outdoor air. Allergy, 47, 83–91.Google Scholar
  80. von Arx, J. A., Guarro, J., & Figuera, M. J. (1986). The ascomycete genus Chaetomium. Berlin: J Cramer.Google Scholar
  81. Woods, J. E., Grimsrud, D. T., & Boschi, N. (1997). Healthy Buildings/IAQ ‘97. Washington, D.C.: ASHRAE.Google Scholar
  82. World Health Organization (2000). Guidelines for concentration and exposure-response measurements of fine and ultra fine particulate matter for use in epidemiological studies. Geneva: World Health Organization.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  1. 1.Botany DepartmentDamietta Faculty of ScienceNew DamiettaEgypt

Personalised recommendations