Advertisement

Aquatic Ecology

, Volume 53, Issue 2, pp 191–203 | Cite as

Zooplankton functional-approach studies in continental aquatic environments: a systematic review

  • Leonardo Fernandes GomesEmail author
  • Hasley Rodrigo Pereira
  • Ana Caroline Alcântara Missias Gomes
  • Maisa Carvalho Vieira
  • Pedro Ribeiro Martins
  • Iris Roitman
  • Ludgero Cardoso Galli Vieira
Article

Abstract

Functional-approach studies are currently increasing in ecology. However, for zooplankton communities, studies are mostly concentrated in marine environments. This study provides a systematic review to reveal the trends and gaps in scientific literature regarding zooplankton functional-approach in continental aquatic environments, including its main groups (testate amoebas, cladocerans, copepods, and rotifers). We focused on determining which functional traits were evaluated for these groups and whether they were based on direct measurements or on literature. We found that despite the recent increase in publications, most studies were limited to Canada, USA, Brazil, and Italy. Publications have been increasing over the last 3 years, representing an advance toward the understanding of the dynamics of these organisms in relation to environmental variations. Most studies used size-related functional traits. Nonetheless, other studies that deal with dietary and feeding strategies have improved the understanding of the dynamics of these organisms. Therefore, we highlight that the use of functional approach is an important tool to understand ecosystem processes and thus to contribute to the knowledge of biodiversity conservation and ecosystem dynamics.

Keywords

Functional facet Functional attributes Cladocerans Copepods Rotifers Testate amoebae 

Notes

Acknowledgements

This study was partly financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

References

  1. Alexandre CM, Almeida PR (2009) The impact of small physical obstacles on the structure of freshwater fish assemblages. River Res Appl 26:977–994.  https://doi.org/10.1002/rra.1308 Google Scholar
  2. Angeler DG, Goedkoop W (2010) Biological responses to liming in boreal lakes: an assessment using plankton, macroinvertebrate and fish communities. J Appl Ecol 47:478–486.  https://doi.org/10.1111/j.1365-2664.2010.01794.x CrossRefGoogle Scholar
  3. Arrieira RL, Schwind LTF, Bonecker CC, Lansac-Tôha FA (2015) Use of functional diversity to assess determinant assembly processes of testate amoebae community. Aquat Ecol 49:561–571.  https://doi.org/10.1007/s10452-015-9546-z CrossRefGoogle Scholar
  4. Balkić AG, Ternjej I, Špoljar M (2018) Hydrology driven changes in the rotifer trophic structure and implications for food web interactions. Ecohydrology 11:e1917.  https://doi.org/10.1002/eco.1917 CrossRefGoogle Scholar
  5. Barnett A, Beisner BE (2007) Zooplankton biodiversity and lake trophic state: explanations invoking resource abundance and distribution. Ecology 88:1675–1686.  https://doi.org/10.1890/06-1056.1 CrossRefGoogle Scholar
  6. Barnett AJ, Finlay K, Beisner BE (2007) Functional diversity of crustacean zooplankton communities: towards a trait-based classification. Freshw Biol 52:796–813.  https://doi.org/10.1111/j.1365-2427.2007.01733.x CrossRefGoogle Scholar
  7. Bertani I, Ferrari I, Rossetti G (2012) Role of intra-community biotic interactions in structuring riverine zooplankton under low-flow, summer conditions. J Plankton Res 34:308–320.  https://doi.org/10.1093/plankt/fbr111 CrossRefGoogle Scholar
  8. Bolduc P, Bertolo A, Pinel-Alloul B (2016) Does submerged aquatic vegetation shape zooplankton community structure and functional diversity? A test with a shallow fluvial lake system. Hydrobiologia 778:151–165.  https://doi.org/10.1007/s10750-016-2663-4 CrossRefGoogle Scholar
  9. Chen G, Dalton C, Taylor D (2010) Cladocera as indicators of trophic state in Irish lakes. J Paleolimnol 44:465–481.  https://doi.org/10.1007/s10933-010-9428-2 CrossRefGoogle Scholar
  10. Cianciaruso MV, Silva IA, Batalha MA (2009) Diversidades filogenética e funcional: novas abordagens para a Ecologia de comunidades. Biota Neotrop 9:93–103.  https://doi.org/10.1590/S1676-06032009000300008 CrossRefGoogle Scholar
  11. de Braghin L, de Almeida BA, Amaral DC et al (2018) Effects of dams decrease zooplankton functional-diversity in river-associated lakes. Freshw Biol 63:721–730.  https://doi.org/10.1111/fwb.13117 CrossRefGoogle Scholar
  12. de Sodré E, Figueiredo-Barros MP, Roland F et al (2017) Complimentary biodiversity measures applied to zooplankton in a recovering floodplain lake. Fundam Appl Limnol 190:279–298.  https://doi.org/10.1127/fal/2017/1064 Google Scholar
  13. de Souza Vanz SA, Stumpf IRC (2012) Scientific output indicators and scientific collaboration network mapping in Brazil. Collnet J Sci Inf Manag 6:315–334.  https://doi.org/10.1080/09737766.2012.10700942 Google Scholar
  14. Fefilova EB, Loskutova OA, Pestov SV (2008) Micro-benthic crustacean communities in tundra lakes of North-East European Russia. Aquat Ecol 42:449–461.  https://doi.org/10.1007/s10452-007-9109-z CrossRefGoogle Scholar
  15. Fiorino GE, McAdam AG (2018) Local differentiation in the defensive morphology of an invasive zooplankton species is not genetically based. Biol Invasions 20:235–250.  https://doi.org/10.1007/s10530-017-1530-1 CrossRefGoogle Scholar
  16. Fischer JM, Frost TM, Ives AR (2001) Compensatory dynamics in zooplankton community responses to acidification: measurement and mechanisms. Ecol Appl 11:1060–1072.  https://doi.org/10.2307/3061012 CrossRefGoogle Scholar
  17. Fournier B, Coffey EED, van der Knaap WO et al (2016) A legacy of human-induced ecosystem changes: spatial processes drive the taxonomic and functional diversities of testate amoebae in Sphagnum peatlands of the Galápagos. J Biogeogr 43:533–543.  https://doi.org/10.1111/jbi.12655 CrossRefGoogle Scholar
  18. Gélinas M, Pinel-Alloul B (2008) Relating crustacean zooplankton community structure to residential development and landcover disturbance near Canadian Shield lakes. Can J Fish Aquat Sci 65:2689–2702.  https://doi.org/10.1139/F08-163 CrossRefGoogle Scholar
  19. Gianuca AT, Declerck SAJ, Cadotte MW et al (2017) Integrating trait and phylogenetic distances to assess scale-dependent community assembly processes. Ecography (Cop) 40:742–752.  https://doi.org/10.1111/ecog.02263 CrossRefGoogle Scholar
  20. Gianuca AT, Engelen J, Brans KI et al (2018) Taxonomic, functional and phylogenetic metacommunity ecology of cladoceran zooplankton along urbanization gradients. Ecography (Cop) 41:183–194.  https://doi.org/10.1111/ecog.02926 CrossRefGoogle Scholar
  21. Grossetti M, Eckert D, Gingras Y et al (2014) Cities and the geographical deconcentration of scientific activity: a multilevel analysis of publications (1987–2007). Urban Stud 51:2219–2234.  https://doi.org/10.1177/0042098013506047 CrossRefGoogle Scholar
  22. Gutierrez MF, Tavsanoglu UN, Vidal N et al (2018) Salinity shapes zooplankton communities and functional diversity and has complex effects on size structure in lakes. Hydrobiologia 813:237–255.  https://doi.org/10.1007/s10750-018-3529-8 CrossRefGoogle Scholar
  23. Havlicek TD, Carpenter SR (2001) Pelagic species size distributions in lakes: are they discontinuous? Limnol Oceanogr 46:1021–1033.  https://doi.org/10.4319/lo.2001.46.5.1021 CrossRefGoogle Scholar
  24. Hébert M-P, Beisner BE, Maranger R (2017) Linking zooplankton communities to ecosystem functioning: toward an effect-trait framework. J Plankton Res 39:3–12.  https://doi.org/10.1093/plankt/fbw068 CrossRefGoogle Scholar
  25. Jax K (1997) On functional attributes of testate amoebae in the succession of freshwater aufwuchs. Eur J Protistol 33:219–226.  https://doi.org/10.1016/S0932-4739(97)80040-5 CrossRefGoogle Scholar
  26. Kruk C, Segura AM, Peeters ETHM et al (2012) Phytoplankton species predictability increases towards warmer regions. Limnol Oceanogr 57:1126–1135.  https://doi.org/10.4319/lo.2012.57.4.1126 CrossRefGoogle Scholar
  27. Lansac-Tôha FA, Zimmermann-callegari MC, Mucio G et al (2007) Species richness and geographic distribution of testate amoebae (Rhizopoda) in Brazilian freshwater environments. Acta Sci Biol Sci 29:185–195CrossRefGoogle Scholar
  28. Laureto LMO, Cianciaruso MV, Samia DSM (2015) Functional diversity: an overview of its history and applicability. Nat Conserv 13:112–116.  https://doi.org/10.1016/j.ncon.2015.11.001 CrossRefGoogle Scholar
  29. Leoni B (2016) Zooplankton predators and prey: body size and stable isotope to investigate the pelagic food web in a deep lake (Lake Iseo, Northern Italy). J Limnol.  https://doi.org/10.4081/jlimnol.2016.1490 Google Scholar
  30. Leta J (2012) Brazilian growth in the mainstream science: the role of human resources and national journals. J Scientometr Res 1:44–52.  https://doi.org/10.5530/jscires.2012.1.9 CrossRefGoogle Scholar
  31. Lira A, Angelini R, Le Loc’h F et al (2018) Trophic flow structure of a neotropical estuary in northeastern Brazil and the comparison of ecosystem model indicators of estuaries. J Mar Syst 182:31–45.  https://doi.org/10.1016/j.jmarsys.2018.02.007 CrossRefGoogle Scholar
  32. Litchman E, Ohman MD, Kiørboe T (2013) Trait-based approaches to zooplankton communities. J Plankton Res 35:473–484.  https://doi.org/10.1093/plankt/fbt019 CrossRefGoogle Scholar
  33. Madirolas A, Acha EM, Guerrero RA, Lasta C (1997) Sources of acoustic scattering near a halocline in an estuarine frontal system. Sci Mar 61:431–438Google Scholar
  34. Mano H, Tanaka Y (2016) Mechanisms of compensatory dynamics in zooplankton and maintenance of food chain efficiency under toxicant stress. Ecotoxicology 25:399–411.  https://doi.org/10.1007/s10646-015-1598-2 CrossRefGoogle Scholar
  35. Martiny AC, Treseder K, Pusch G (2013) Phylogenetic conservatism of functional traits in microorganisms. ISME J 7:830–838.  https://doi.org/10.1038/ismej.2012.160 CrossRefGoogle Scholar
  36. Massicotte P, Frenette J-J, Proulx R et al (2014) Riverscape heterogeneity explains spatial variation in zooplankton functional evenness and biomass in a large river ecosystem. Landsc Ecol 29:67–79.  https://doi.org/10.1007/s10980-013-9946-1 CrossRefGoogle Scholar
  37. Maznah WOW, Intan S, Sharifah R, Lim CC (2018) Lentic and lotic assemblages of zooplankton in a tropical reservoir, and their association with water quality conditions. Int J Environ Sci Technol 15:533–542CrossRefGoogle Scholar
  38. McGill B, Enquist B, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185.  https://doi.org/10.1016/j.tree.2006.02.002 CrossRefGoogle Scholar
  39. Mena-Chalco JP, Digiampietri LA, Lopes FM, Cesar RM (2014) Brazilian bibliometric coauthorship networks. J Assoc Inf Sci Technol 65:1424–1445.  https://doi.org/10.1002/asi.23010 CrossRefGoogle Scholar
  40. Moher D, Shamseer L, Clarke M et al (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev 4:1.  https://doi.org/10.1186/2046-4053-4-1 CrossRefGoogle Scholar
  41. Moreira FWA, Leite MGP, Fujaco MAG et al (2016) Assessing the impacts of mining activities on zooplankton functional diversity. Acta Limnol Bras.  https://doi.org/10.1590/s2179-975x0816 Google Scholar
  42. Morse NB, Pellissier PA, Cianciola EN et al (2014) Novel ecosystems in the Anthropocene: a revision of the novel ecosystem concept for pragmatic applications. Ecol Soc 19:art12.  https://doi.org/10.5751/es-06192-190212 CrossRefGoogle Scholar
  43. Nabout JC, Bini LM, Diniz-Filho JAF (2010) Global literature of fiddler crabs, genus Uca (Decapoda, Ocypodidae): trends and future directions. Iheringia Série Zool 100:463–468.  https://doi.org/10.1590/S0073-47212010000400019 CrossRefGoogle Scholar
  44. Nevalainen L, Luoto TP (2017) Relationship between cladoceran (Crustacea) functional diversity and lake trophic gradients. Funct Ecol 31:488–498.  https://doi.org/10.1111/1365-2435.12737 CrossRefGoogle Scholar
  45. Nevalainen L, Luoto TP, Manca M, Weisse T (2014) A paleolimnological perspective on aquatic biodiversity in Austrian mountain lakes. Aquat Sci 77:59–69.  https://doi.org/10.1007/s00027-014-0363-6 CrossRefGoogle Scholar
  46. Nevalainen L, Brown M, Manca M (2018) Sedimentary record of cladoceran functionality under Eutrophication and re-oligotrophication in Lake Maggiore, Northern Italy. Water.  https://doi.org/10.3390/w10010086 Google Scholar
  47. Obertegger U, Flaim G (2015) Community assembly of rotifers based on morphological traits. Hydrobiologia 753:31–45.  https://doi.org/10.1007/s10750-015-2191-7 CrossRefGoogle Scholar
  48. Obertegger U, Manca M (2011) Response of rotifer functional groups to changing trophic state and crustacean community. J Limnol 70:231–238.  https://doi.org/10.3274/JL11-70-2-07 CrossRefGoogle Scholar
  49. Obertegger U, Smith HA, Flaim G, Wallace RL (2011) Using the guild ratio to characterize pelagic rotifer communities. Hydrobiologia 662:157–162.  https://doi.org/10.1007/s10750-010-0491-5 CrossRefGoogle Scholar
  50. Oertli B, Biggs J, Céréghino R et al (2005) Conservation and monitoring of pond biodiversity: introduction. Aquat Conserv Mar Freshw Ecosyst 15:535–540.  https://doi.org/10.1002/aqc.752 CrossRefGoogle Scholar
  51. Oh H-J, Jeong H-G, Nam G-S et al (2017) Comparison of taxon-based and trophi-based response patterns of rotifer community to water quality: applicability of the rotifer functional group as an indicator of water quality. Animal Cells Syst (Seoul) 21:133–140.  https://doi.org/10.1080/19768354.2017.1292952 CrossRefGoogle Scholar
  52. Payne RJ (2013) Seven reasons why protists make useful bioindicators. Acta Protozool 52:105–113.  https://doi.org/10.4467/16890027AP.13.0011.1108 Google Scholar
  53. Petchey OL, Gaston KJ (2002) Functional diversity (FD), species richness and community composition. Ecol Lett 5:402–411.  https://doi.org/10.1046/j.1461-0248.2002.00339.x CrossRefGoogle Scholar
  54. Petchey OL, Gaston KJ (2006) Functional diversity: back to basics and looking forward. Ecol Lett 9:741–758.  https://doi.org/10.1111/j.1461-0248.2006.00924.x CrossRefGoogle Scholar
  55. Pont D, Hugheny B, Beuer U et al (2006) Assessing river biotic condition at a continental scale: a European approach using functional metrics and fish assemblages. J Appl Ecol 43:70–80.  https://doi.org/10.1111/j.1365-2664.2005.01126.x CrossRefGoogle Scholar
  56. Pool TK, Grenouillet G, Villéger S (2014) Species contribute differently to the taxonomic, functional, and phylogenetic alpha and beta diversity of freshwater fish communities. Divers Distrib 20:1235–1244.  https://doi.org/10.1111/ddi.12231 CrossRefGoogle Scholar
  57. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.r-project.org/
  58. Raevel V, Violle C, Munoz F (2012) Mechanisms of ecological succession: insights from plant functional strategies. Oikos 121:1761–1770.  https://doi.org/10.1111/j.1600-0706.2012.20261.x CrossRefGoogle Scholar
  59. Redmond LE, Loewen CJG, Vinebrooke RD (2018) A functional approach to zooplankton communities in mountain lakes stocked with non-native sportfish under a changing climate. Water Resour Res 54:2362–2375.  https://doi.org/10.1002/2017WR021956 CrossRefGoogle Scholar
  60. Reynolds CS, Alex Elliott J, Frassl MA (2014) Predictive utility of trait-separated phytoplankton groups: a robust approach to modeling population dynamics. J Great Lakes Res 40:143–150.  https://doi.org/10.1016/j.jglr.2014.02.005 CrossRefGoogle Scholar
  61. Rizo EZC, Gu Y, Papa RDS et al (2017) Identifying functional groups and ecological roles of tropical and subtropical freshwater Cladocera in Asia. Hydrobiologia 799:83–99.  https://doi.org/10.1007/s10750-017-3199-y CrossRefGoogle Scholar
  62. Rosenberg DM, McCully P, Pringle CM (2000) Global-scale environmental effects of hydrological alterations: introduction. Bioscience 50:746–751.  https://doi.org/10.1641/0006-3568(2000)050[0746:GSEEOH]2.0.CO;2 CrossRefGoogle Scholar
  63. Rusak JA, Yan ND, Somers KM et al (2002) Temporal, spatial, and taxonomic patterns of crustacean zooplankton variability in unmanipulated north-temperate lakes. Limnol Oceanogr 47:613–625.  https://doi.org/10.4319/lo.2002.47.3.0613 CrossRefGoogle Scholar
  64. Schwind LTF, Dias JD, Joko CY et al (2013) Advances in studies on testate amoebae (Arcellinida and Euglyphida): a scientometric approach. Acta Sci Biol Sci 35:549–555.  https://doi.org/10.4025/actascibiolsci.v35i4.18184 CrossRefGoogle Scholar
  65. Schwind LTF, Arrieira RL, Bonecker CC, Lansac-Toha FA (2016a) Chlorophyll-a and suspended inorganic material affecting the shell traits of testate amoebae community. ACTA Protozool 55:145–154.  https://doi.org/10.4467/16890027AP.16.014.5746 Google Scholar
  66. Schwind LTF, Arrieira RL, Mantovano T et al (2016b) Temporal influence on the functional traits of testate amoebae in a floodplain lake. Limnetica 35:355–364Google Scholar
  67. Sprules WG, Holtby LB (1979) Body size and feeding ecology as alternatives to taxonomy for the study of limnetic zooplankton community structure. J Fish Res Board Can 36:1354–1363.  https://doi.org/10.1139/f79-194 CrossRefGoogle Scholar
  68. Stemberger RS, Miller EK (2003) Cladoceran body length and Secchi disk transparency in northeastern U.S. lakes. Can J Fish Aquat Sci 60:1477–1486.  https://doi.org/10.1139/f03-124 CrossRefGoogle Scholar
  69. Thompson PL, Davies TJ, Gonzalez A (2015) Ecosystem functions across trophic levels are linked to functional and phylogenetic diversity. PLoS ONE.  https://doi.org/10.1371/journal.pone.0117595 Google Scholar
  70. Threlkeld ST (1983) Spatial and temporal variation in the summer zooplankton community of a riverine reservoir. Hydrobiologia 107:249–254.  https://doi.org/10.1007/BF00036694 CrossRefGoogle Scholar
  71. Tilman D (2001) Functional diversity. In: Encyclopedia of biodiversity. Elsevier, pp 587–596Google Scholar
  72. Tilman D, Knops J, Wedin D et al (1997) The influence of functional diversity and composition on ecosystem processes. Science 277:1300–1302.  https://doi.org/10.1126/science.277.5330.1300 CrossRefGoogle Scholar
  73. Toussaint A, Charpin N, Brosse S, Villéger S (2016) Global functional diversity of freshwater fish is concentrated in the Neotropics while functional vulnerability is widespread. Sci Rep 6:22125.  https://doi.org/10.1038/srep22125 CrossRefGoogle Scholar
  74. Verissimo H, Patricio J, Goncalves E et al (2017) Functional diversity of zooplankton communities in two tropical estuaries (NE Brazil) with different degrees of human-induced disturbance. Mar Environ Res 129:46–56.  https://doi.org/10.1016/j.marenvres.2017.04.011 CrossRefGoogle Scholar
  75. Vieira ACB, Medeiros AMA, Ribeiro LL, Crispim MC (2011) Population dynamics of Moina minuta Hansen (1899), Ceriodaphnia cornuta Sars (1886), and Diaphanosoma spinulosum Herbst (1967) (Crustacea: Branchiopoda) in different nutrients (N and P) concentration ranges. Acta Limnol Bras 23:48–56.  https://doi.org/10.4322/actalb.2011.018 CrossRefGoogle Scholar
  76. Visconti A, Caroni R, Rawcliffe R et al (2018) Defining seasonal functional traits of a freshwater zooplankton community using delta C-13 and delta N-15 stable isotope analysis. Water 10:108.  https://doi.org/10.3390/w10020108 CrossRefGoogle Scholar
  77. Vogt RJ, Peres-Neto PR, Beisner BE (2013) Using functional traits to investigate the determinants of crustacean zooplankton community structure. Oikos 122:1700–1709.  https://doi.org/10.1111/j.1600-0706.2013.00039.x CrossRefGoogle Scholar
  78. Weiher E, van der Werf A, Thompson K et al (1999) Challenging theophrastus: a common core list of plant traits for functional ecology. J Veg Sci 10:609–620.  https://doi.org/10.2307/3237076 CrossRefGoogle Scholar
  79. Wen X, Zhai P, Feng R et al (2017) Comparative analysis of the spatiotemporal dynamics of rotifer community structure based on taxonomic indices and functional groups in two subtropical lakes. Sci Rep.  https://doi.org/10.1038/s41598-017-00666-y Google Scholar
  80. Wickham H (2016) Ggplot2: elegant graphics for data analysis. Springer, New YorkCrossRefGoogle Scholar
  81. Winemiller KO, Fitzgerald DB, Bower LM, Pianka ER (2015) Functional traits, convergent evolution, and periodic tables of niches. Ecol Lett 18:737–751.  https://doi.org/10.1111/ele.12462 CrossRefGoogle Scholar
  82. Work K, Havens K, Sharfstein B, East T (2005) How important is bacterial carbon to planktonic grazers in a turbid, subtropical lake? J Plankton Res 27:357–372.  https://doi.org/10.1093/plankt/fbi013 CrossRefGoogle Scholar
  83. Yang Z-C, Wang Z-H, Zhang Z-H (2011) Biomonitoring of testate amoebae (protozoa) as toxic metals absorbed in aquatic bryophytes from the Hg-Tl mineralized area (China). Environ Monit Assess 176:321–329.  https://doi.org/10.1007/s10661-010-1585-2 CrossRefGoogle Scholar
  84. Zhang Y, Chen K, Zhu G et al (2016) Inter-organizational scientific collaborations and policy effects: an ego-network evolutionary perspective of the Chinese Academy of Sciences. Scientometrics 108:1383–1415.  https://doi.org/10.1007/s11192-016-2022-2 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Leonardo Fernandes Gomes
    • 1
    Email author
  • Hasley Rodrigo Pereira
    • 1
  • Ana Caroline Alcântara Missias Gomes
    • 1
  • Maisa Carvalho Vieira
    • 2
  • Pedro Ribeiro Martins
    • 1
  • Iris Roitman
    • 3
  • Ludgero Cardoso Galli Vieira
    • 1
    • 3
  1. 1.Núcleo de Estudos e Pesquisas Ambientais e Limnológicas - NEPAL, Faculdade UnB de PlanaltinaUniversidade de Brasília (UnB)PlanaltinaBrazil
  2. 2.Departamento de EcologiaUniversidade Federal de GoiásGoiâniaBrazil
  3. 3.Projeto RadisUniversidade de Brasília (UnB)PlanaltinaBrazil

Personalised recommendations