Advertisement

Aquatic Ecology

, Volume 53, Issue 1, pp 109–118 | Cite as

Gill parasites of fish and their relation to host and environmental factors in two estuaries in northeastern Brazil

  • Julia M. FalkenbergEmail author
  • Jéssica Emília S. A. Golzio
  • André Pessanha
  • Joana Patrício
  • Ana L. Vendel
  • Ana C. F. Lacerda
Article

Abstract

Fish parasites can be good indicators of the quality of water bodies, and their presence or absence can be interpreted as a sign of habitat changes, helping us to diagnose environmental problems. This study was conducted in two estuaries located in the Paraíba state, northeastern Brazil: Mamanguape, an environmental protection area, and Paraíba do Norte, a river with riverside communities along its length. The objective of the study was to determine whether host and abiotic characteristics predict the richness of fish gill parasites and/or the abundance of the most abundant and prevalent parasite species, the copepod Acusicola brasiliensis, testing the species as a possible bioindicator. The fish host species were Anchoa januaria, Atherinella brasiliensis, Mugil curema, and Rhinosardinia bahiensis. Generalized linear models were constructed to test the influence of predictor variables on parasite richness and A. brasiliensis abundance. The predictor variables used in the models were the host relative condition factor (Kn), host length, collection season (rainy or dry), estuary, host species, total phosphorus, and chlorophyll a. Both parasite species richness and A. brasiliensis mean abundance showed a significant relation to water quality parameters, suggesting their possible use as environmental quality indicators.

Keywords

Ichthyoparasitology Ectoparasites Bioindicators Water pollution 

Notes

Acknowledgements

The authors thank the Coordination of Improvement of Higher Education Personnel (CAPES) for financing the PVE/CAPES project (Process 173/2012) “What lessons can be learned from ecological functioning in the estuarine systems of the state of Paraiba? An analysis of the effect of natural and anthropogenic disturbances” and the Science without Borders Program (Special Visiting Researcher). CAPES also funded J. Golzio through a master’s scholarship. The National Council for Scientific and Technological Development (CNPq) funded J. Falkenberg and A. Coutinho through undergraduate scholarships (Scientific Initiation). The authors thank Saulo Vital for the map.

References

  1. AESA—Agência Executiva de Gestão das águas do Estado da Paraíba. Chuvas acumuladas no ano no município de Rio Tinto-PB de 01/01/2011 a 31/10/2011. http://site2.aesa.pb.gov.br/aesa/sort.do?layoutCollection=0&layoutCollectionProperty=&layoutCollectionState=1&pagerPage=4
  2. Adams SM, Greeley MS (2000) Ecotoxicological indicators of water quality: using multiresponse indicators to assess the health of aquatic ecosystems. Water Air Soil Pollut 123:103–115.  https://doi.org/10.1023/A:1005217622959 Google Scholar
  3. Al-Niaeem KS, Al-Saboonchi AA, Ahmed RA (2015) Effect of water quality on fishes infected with copepods from three stations in Basrah province, Iraq. J Int Acad Res multidiscip 3(4):428–436Google Scholar
  4. Alves VEN, Patrício J, Dolbeth M, Pessanha A, Palma ART, Dantas EW, Vendel AL (2016) Do different degrees of human activity affect the diet of Brazilian silverside Atherinella brasiliensis? J Fish Biol 89(2):1239–1257Google Scholar
  5. Amdur MO, Dull J, Klassen ED (1991) Casarett and Doull’s toxicology. Pergamon Press, New YorkGoogle Scholar
  6. Bennett EM, Carpenter SR, Caraco NF (2001) Human impact on erodable phosphorus and eutrophication: a global perspective. Bioscience 51:227–234Google Scholar
  7. Billiard SM, Khan RA (2003) Chronic stress in cunner, Tautogolabrus adspersus, exposed to municipal and industrial effluents. Ecotoxicol Environ Safe 55:9–18Google Scholar
  8. Brasil-Sato MC, Pavanelli GC (1999) Ecological and reproductive aspects of Neoechinorhynchus pimelodi (Eoacanthocephala: Neoechinorhynchidae) of Pimelodus maculatus Lacépède (Siluroidei, Pimelodidae) of the São Francisco River, Brazil. Revista Brasileira de Zoologia 16:73–82Google Scholar
  9. Bush AO, Lafferty KD, Lotz JM, Shostak AW (1997) Parasitology meets ecology on its own terms: Margolis et al. revised. J Parasitol 83:575–583Google Scholar
  10. Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8:559–568Google Scholar
  11. Carvalho CD, Corneta CM, Uieda VS (2007) Schooling behavior of Mugil curema (Perciformes: Mugilidae) in an estuary in southeastern Brazil. Neotrop Ichthyol 5(1):81–83Google Scholar
  12. Catalano SR, Whittington ID, Donellan SC, Gillanders BM (2014) Parasites as biological tags to assess host population structure: guidelines, recent genetic advances and comments on a holistic approach. Int J Parasitol Parasites Wildl 3(2):220–226Google Scholar
  13. CERHPB—Conselho Estadual de Recursos Hídricos do Estado da Paraíba (2004) Proposta de instituição do Comitê das Bacias Hidrográficas do Litoral Norte. João PessoaGoogle Scholar
  14. Costanza R, Mageau M (1999) What is a healthy ecosystem? Aquat Ecol 33:105–115Google Scholar
  15. Dias PG, Furuya WF, Pavanelli GC, Machado MH, Takemoto RM (2004) Carga parasitária de Rondonia rondoni, Travassos, 1920 (Nematoda, Atrictidae) e fator de condição do armado, Pterodoras granulosus, Valenciennes, 1833 (Pisces, Doradidae). Acta Sci Biol Sci 26(2):151–156Google Scholar
  16. Dogiel VA (1961) Ecology of the parasites of freshwater fishes. In: Dogiel VA, Petrushevski GK, Polyanski YI (eds) Parasitology of fishes. Oliver and Boyd Ltd, Edinburgh, pp 1–4Google Scholar
  17. Dogiel VA, Petrushevski GK, Polyanski YI (1961) Parasitology of fishes. Oliver and Boyd Ltd, Edinburgh and LondonGoogle Scholar
  18. Dolbeth M, Vendel AL, Baeta A, Pessanha A, Patrício J (2016) Exploring ecosystem functioning in two Brazilian estuaries integrating fish diversity, species traits and food webs. Mar Ecol Prog Ser 560:41–55Google Scholar
  19. Dušek L, Gelnar M, Šebelová Š (1998) Biodiversity of parasites in a freshwater environment with respect to pollution: metazoan parasites of chub (Leuciscus cephalus L) as a model for statistical evaluation. Int J Parasitol 28:1555–1571Google Scholar
  20. Galli P, Crosa G, Mariniello L, Ortis M, D’Amelio S (2001) Water quality as a determinant of the composition of fish parasites communities. Hydrobiologia 452:173–179Google Scholar
  21. Gibson DI, Jones A, Bray RA (2002) Keys to the Trematoda. CABI, WallingfordGoogle Scholar
  22. Golzio JESA, Falkenberg JM, Praxedes RG, Coutinho AS, Laurindo MK, Pessanha ALM, Madi R, Patricio JM, Vendel AL, Souza GTR, Melo C, Lacerda ACF (2017) Gill parasites of fish from two estuaries in northeastern Brazil: new hosts and geographical records. An Acad Bras Ciênc 89:2281–2291Google Scholar
  23. Guidelli GM, Isaac A, Takemoto RM, Pavanelli GC (2003) Endoparasite infracommunities of Hemisorubim platyrhynchos (VALENCIENNES, 1840) (PISCES: PIMELODIDAE) of the Baía river, upper Paraná river floodplain, Brazil: specific composition and ecological aspects. Braz J Biol 63(2):261–268Google Scholar
  24. Isaac A, Guidelli GM, Takemoto RM, Pavanelli GC (2000) Prosthenhystera obesa (Digenea), parasite of Salminus maxillosus (Characidae) of the floodplain of the upper Paraná river, Paraná, Brazil: influence of the size and Sex of host. Acta Sci 22(2):523–526Google Scholar
  25. Isaac A, Guidelli GM, França JG, Pavanelli GC (2004) Composição e estrutura das infracomunidades endoparasitárias de Gymnotus spp. (Pisces: Gymnotidae) do rio Baía, Mato Grosso do Sul, Brasil. Acta Sci 26(4):453–462Google Scholar
  26. Jeney Z, Valtonen ET, Jeney G, Jokinen EI (2002) Effects of pulp and paper mill effluent (BKME) on physiological parameters of roach (Rutilus rutilus L.) infected by the digenean Rhipidocotyle fennica. Folia Parasitol 49:103–108Google Scholar
  27. Kennedy CR, Watt RJ (1994) The decline and natural recovery of an unmanaged coarse fishery in relation to changes in land use and attendant eutrophication. In: Cowx IG (ed) Rehabilitation of freshwater fisheries. Blackwell Scientific, Oxford, pp 366–375Google Scholar
  28. Lafferty KD (1997) Environmental parasitology: what can parasites tell us about human impacts on the environment? Parasitol Today 13:251–530Google Scholar
  29. Lafferty KD, Kuris AM (1999) How environmental stress affects the impacts of parasites. Limnol Oceanogr 4:925–931Google Scholar
  30. Landsberg JH, Blakesley BA, Reese RO, Mcrae G, Forstchen PR (1998) Parasites of fish as indicators of environmental stress. Environ Monit Assess 51:211–232.  https://doi.org/10.1023/A:1005991420265 Google Scholar
  31. Le Cren ED (1951) The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (Perca fluviatilis). J Anim Ecol 20:201–219Google Scholar
  32. Lemly AD (1980) Effects of a larval parasite on the growth and survival of young bluegill. Proc Thirty Fourth Ann Conf Southeast Assoc Fish Wildl Agencies 34:263–274Google Scholar
  33. Lizama MAP, Takemoto RM, Pavenelli GC (2006) Influence of the seasonal and environmental patterns and host reproduction on the metazoan parasites of Prochilodus lineatus (Valenciennes, 1836) (Prochilodontidae) of the Upper Paraná River floodplain, Brazil. Braz Arch Biol Technol 49:611–620Google Scholar
  34. Lizama MAP, Takemoto RM, Ranzani-Paiva MJ, Ayroza LMS, Pavanelli GC (2007) Relação parasito–hospedeiro em peixes de pisciculturas da região de Assis, Estado de São Paulo, Brasil 1. Oreochromis niloticus (Linnaeus, 1757). Acta Sci 29:223–231Google Scholar
  35. Lorenzen C (1967) Determination of chlorophyll and pheopigments: spectrophotometric equations. Limnol Oceanogr 12:343–346Google Scholar
  36. Macêdo AKS, Silva JRP, Oliveira SP, Haddad Junior V, Vendel AL (2017) Potentially dangerous fish of the Paraiba Estuary: identification and envenomation mechanisms. J Coast Life Med 05:459–462Google Scholar
  37. Machado MR (1999) Uso de brânquias de peixes como indicadores de qualidade das águas. Ciências Biológicas e da Saúde 1:63–76Google Scholar
  38. Mackenzie K (1999) Parasites as pollution indicators in marine ecosystems: a proposed early warning system. Mar Pollut Bull 38:955–959Google Scholar
  39. Mackenzie K, Williams HH, Williams B, Mcvicar AH, Siddall R (1995) Parasites as indicators of water quality and the potential use of helminth transmission in marine pollution studies. Adv Parasitol 35:85–144Google Scholar
  40. Madanire-Moyo G, Barson M (2010) Diversity of metazoan parasites of the African catfish Clarias gariepinus (Burchell, 1822) as indicators of pollution in a subtropical African river system. J Helminthol 84:216–227Google Scholar
  41. Madi R, Ueda RMT (2009) O papel de Ancyrocephalinae (Monogenea: Dactylogyridae), parasito de Geophagus brasiliensis (Pisces: Cichlidae), como indicador ambiental. Revista Brasileira de Parasitologia Veterinária 18:38–41Google Scholar
  42. Marcelino EV, Rudorff FM, Marcelino IPVO, Goerl RF, Kobiyama M (2005) Impacto do Furacão Katrina sobre a Região Sul Catarinense: monitoramento e avaliação pós desastre. Geografia 30:559–582Google Scholar
  43. Marcogliese DJ (2005) Parasites of the superorganism: are they indicators of ecosystem health? Int J Parasitol 35:705–1600Google Scholar
  44. Marcogliese DJ, Cone DK (1997) Food webs: a plea for parasites. Trends Ecol Evol 12:320–325Google Scholar
  45. Moravec F (1998) Nematodes of freshwater fishes of the Neotropical Region. Academia, PragaGoogle Scholar
  46. Moreira LHA, Yamada FH, Ceschini TL, Takemoto RM, Pavanelli GC (2010) The influence of parasitism on the relative condition factor (Kn) of Metynnis lippincottianus (Characidae) from two aquatic environments: the upper Parana river floodplain and Corvo and Guairacá rivers, Brazil. Acta Scientiarum Biological Sciences 32(1):83–86Google Scholar
  47. Overstreet RM, Howse HD (1977) Some parasites and diseases of estuarine fishes in polluted habitats of Mississippi. Ann N Y Acad Sci 298:427–462Google Scholar
  48. Palm H, Dobberstein RC (1999) Occurrence of Trichodinid ciliates (Peritricha: Urceolariidae) in the Kiel Fjord, Baltic Sea, and its possible use as a biological indicator. Parasitol Res 85:726–732Google Scholar
  49. Paludo D, Klonowski VS (1999) Barra de Mamanguape–PB: Estudo do impacto do uso de madeira de manguezal pela população extrativista e da possibilidade de reflorestamento e manejo dos recursos madeireiros. Conselho Nacional da Reserva da Biosfera da Mata Atlântica 4:34–54Google Scholar
  50. Pessanha ALM, Araújo FG, Azevedo MCC, Gomes ID (2000) Variações temporais e espaciais na composição e estrutura da comunidade de peixes jovens da baía de Sepetiba, Rio de Janeiro. Revista Brasileira de Zoologia 17:251–261Google Scholar
  51. Pietrock M, Marcogliese DJ (2003) Free-living endohelminth stages: at the mercy of environmental conditions. Trends Parasitol 19:293–299Google Scholar
  52. Poulin R (1996) Sexual inequalities in helminth infections: a cost of being a male? Am Nat J 147(2):287–295Google Scholar
  53. Poulin R, Morand S (2004) Parasite Biodiversity. Smithsonian Books, WashingtonGoogle Scholar
  54. Poulin R, Paterson RA, Towsend CR, Tompkins DM, Kelly DW (2011) Biological invasions and the dynamics of endemic diseases in freshwater ecosystems. Freshw Biol 56:676–688Google Scholar
  55. R Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
  56. Sarvala J, Ventelä AM, Helminen H, Hirvonen A, Saarikari V, Salonen S, Vuorio K (1998) Relations between planktivorous fish abundance, zooplankton and phytoplankton in three lakes of differing productivity. Hydrobiologia 363:81–95Google Scholar
  57. Smith VH (1998) Cultural eutrophication of inland, estuarine, and coastal waters. In: Pace ML, Groffman PM (eds) Successes, limitations and frontiers in ecosystem science. Springer, New York, pp 7–49Google Scholar
  58. Strickland JDH, Parsons TR (1972) A practical handbook of seawater analysis. Fisheries Research Board of Canadá, St. AndrewsGoogle Scholar
  59. Sures B (2003) Accumulation of heavy metals by intestinal helminths in fish: an overview and perspective. Parasitology 126(7):53–60Google Scholar
  60. Sures B (2004) Environmental parasitology: relevancy of parasites in monitoring environmental pollution. Trends Parasitol 20:170–177Google Scholar
  61. Sures B, Nachev M, Selbach C, Marcogliese DJ (2017) Parasite responses to pollution: what we know and where we go in ‘environmental parasitology. Parasites Vectors 10(65):1–19Google Scholar
  62. Thatcher VE (2006) Amazon fish parasites. Pensoft, BulgariaGoogle Scholar
  63. Travassos L, Freitas JFT, Khon A (1969) Trematódeos do Brasil. Instituto Osvaldo Cruz, Rio de JaneiroGoogle Scholar
  64. Valtonen ET, Holmes JC, Koskivaara M (1997) Eutrophication, pollution, and fragmentation: effects on parasite communities in roach (Rutilus rutilus) and perch (Perca fluviatilis) in four lakes in central Finland. Can J Fish Aquat Sci 54:572–585Google Scholar
  65. Vazzoler AEAM (1996) Biologia e reprodução de peixes teleósteos: teoria e prática. EDUEM, MaringáGoogle Scholar
  66. Vendel AL, Bessa F, Alves VEM, Amorim AL, Palma ART (2017) Widespread microplastic ingestion by fish assemblages in tropical estuaries subjected to anthropogenic pressures. Mar Pollut Bull 115:1Google Scholar
  67. Vidal-Martínez VM, Wunderlich AC (2017) Parasites as bioindicators of environmental degradation in Latin America: a meta-analysis. J Helminthol 91(2):165–173Google Scholar
  68. Vidal-Martínez VE, Pech D, Sures B, Purucker ST, Poulin R (2010) Can parasites really reveal environmental impact? Trends Parasitol 26(1):44–51Google Scholar
  69. Vital JF, Varella AMB, Porto DB, Malta JCO (2011) Sazonalidade da fauna de metazoários de Pygocentrus nattereri (Kner, 1858) no Lago Piranha (Amazonas, Brazil), e a avaliação de seu potencial como indicadora de saúde do ambiente. Biota Neotrop 11(1):199–204Google Scholar
  70. Watanabe Y, Abe K, Kusakabe M (1994) Characteristics of the nutrients distribution in the East China Sea. Sapporo 43:54–60Google Scholar
  71. Williams WD (1998) Salinity as a determinant of the structure of biological communities in salt lakes. Hydrobiologia 381:191–201Google Scholar
  72. Williams HH, Mackenzie K (2003) Marine parasites as pollution indicators: an update. Parasitology 126:27–41Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Laboratory of Hydrology, Microbiology and ParasitologyFederal University of ParaíbaJoão PessoaBrazil
  2. 2.Graduate Program in Ecology and Environmental MonitoringFederal University of ParaíbaJoão PessoaBrazil
  3. 3.Graduate Program in Zoology (Biological Sciences)Federal University of ParaíbaJoão PessoaBrazil
  4. 4.Graduate Program in Ecology and ConservationState University of ParaíbaCampina GrandeBrazil
  5. 5.Faculty of Sciences and Technology, MARE-Marine and Environmental Sciences CentreUniversity of CoimbraCoimbraPortugal
  6. 6.State University of Paraíba - Campus VJoão PessoaBrazil
  7. 7.Departamento de Sistemática e EcologiaUniversidade Federal da ParaíbaJoão PessoaBrazil

Personalised recommendations