Aquatic Ecology

, Volume 51, Issue 1, pp 177–189 | Cite as

Combating aggressive macrophyte encroachment on a typical Yangtze River lake: lessons from a long-term remote sensing study of vegetation

  • Qiang Jia
  • Lei CaoEmail author
  • Hervé Yésou
  • Claire Huber
  • Anthony David Fox


Overabundant growth of emergent lacustrine plants can cause biodiversity, ecosystem service and economic loss. The two-basined Wuchang Lake is a typical small shallow lake within the Yangtze River floodplain. Expansion of the emergent macrophyte Zizania latifolia at Wuchang Lower Lake (to 49 km2 in area, c. 87.0% of Lower Lake) has increasingly denied the local community open water for fishing since the 1980s. To better understand the causes of these changes and potential remediation, we used annual Landsat imagery from 1975 to 2012 to determine the patterns of expansion between years as well as the effects of water levels in different seasons and trophic status on the annual extent of macrophytes in the Lower Lake. These analyses showed that: (1) Z. latifolia progressively covered the Lower Lake, while remaining confined to one inlet in the Upper Lake; (2) despite the generally increasing trend, there were obvious annual variations in area of Z. latifolia; (3) variation of water level in spring contributed to between-year variation in area and was significantly negatively correlated with expansion in Z. latifolia. Based on these results, to reduce the expansion in Z. latifolia, we recommend maintaining spring Lower Lake water levels above at least at 11.6 m and better at 12 m, cutting shoots in June and July, with subsequent shoot removal in autumn.


Macrophyte control Management Trophic status Water level Zizania latifolia 



This study was supported by the National Key Technology R&D Program (2015BAD13B01), the National Natural Science Foundation of China (Grant No. 31370416), State Key Laboratory of Urban and Regional Ecology, Chinese Academy of Sciences (No. SKLURE2013-1-05), China Biodiversity Observation Networks (Sino BON) as well as ESA MOST DRAGON 3 project 10577 and “Synergy of Satellite Imagery and Altimetry for Inland Water Bodies and Wetland Monitoring. Applications to the Analysis of Water Resource Dynamic in Terms of Risk Management, Water Quality, Biodiversity Dynamic trends and Public Health”.

Supplementary material

10452_2016_9609_MOESM1_ESM.pdf (820 kb)
Supplementary material 1 (PDF 820 kb)


  1. Andersson B (2001) Macrophyte development and habitat characteristics in Sweden’s large lakes. Ambio 30:503–513. doi: 10.1579/0044-7447-30.8.503 CrossRefPubMedGoogle Scholar
  2. Asaeda T, Siong K (2008) Dynamics of growth, carbon and nutrient translocation in Zizania latifolia. Ecol Eng 32:156–165. doi: 10.1016/j.ecoleng.2007.10.005 CrossRefGoogle Scholar
  3. Auckland Regional Council (2002) Auckland regional pest management strategy. Auckland Regional Council, AucklandGoogle Scholar
  4. Barter M, Cao L, Chen L, Lei G (2005) Results of a survey for waterbirds in the lower Yangtze floodplain, China, in January–February 2004. Forktail 21:1Google Scholar
  5. Barton K (2013) MuMIn: multi-model inference. R package version 1.9. 5Google Scholar
  6. Barzen J, Engels M, Burnham J, Harris J, Wu G (2009) Potential impacts of a water control structure on the abundance and distribution of wintering waterbirds at Poyang Lake. Unpublished report submitted to Hydro-Ecology Institute of the Yangtze Water Resources Commission Baraboo. International Crane Foundation, WisconsinGoogle Scholar
  7. Biosecurity New Zealand (2006) National pest plant accord. Ministry of Agriculture and Forestry, WellingtonGoogle Scholar
  8. Biro K, Pradhan B, Buchroithner M, Makeschin F (2010) Use of multi-temporal satellite data for land-use/land-cover change analyses and its impacts on soil properties in the northern part of Gadarif Region. In: Reuter R (ed) Remote sensing for science, education and natural and cultural heritage. EARSel, Paris, pp 305–312Google Scholar
  9. Boyd DS, Sanchez-Hernandez C, Foody GM (2006) Mapping a specific class for priority habitats monitoring from satellite sensor data. Int J Remote Sens 27:2631–2644. doi: 10.1080/01431160600554348 CrossRefGoogle Scholar
  10. Brivio PA, Giardino C, Zilioli E (2001) Validation of satellite data for quality assurance in lake monitoring applications. Sci Total Environ 268:3–18. doi: 10.1016/S0048-9697(00)00693-8 CrossRefPubMedGoogle Scholar
  11. Cao L, Fox AD (2009) Birds and people both depend on China’s wetlands. Nature 460:173. doi: 10.1038/460173b CrossRefPubMedGoogle Scholar
  12. Cao L, Zhang Y, Barter M, Lei G (2010) Anatidae in eastern China during the non-breeding season: geographical distributions and protection status. Biol Conserv 143:650–659. doi: 10.1016/j.biocon.2009.12.001 CrossRefGoogle Scholar
  13. Chandra DS, Tanaka N (2006) Harvesting aerial shoots of Zizania latifolia at different growth stages: effects on belowground biomass, regrowth, and rhizome morphology. J Freshw Ecol 21:583–591. doi: 10.1080/02705060.2006.9664119 CrossRefGoogle Scholar
  14. Chavez P Jr (1996) Image-based atmospheric corrections—revisited and revised. Photogramm Eng Remote Sens 62:1025–1036Google Scholar
  15. Development Core Team R (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  16. Engloner AI (2009) Structure, growth dynamics and biomass of reed (Phragmites australis)—a review. Flora Morphol Distrib Funct Ecol Plants 204:331–346. doi: 10.1016/j.flora.2008.05.001 CrossRefGoogle Scholar
  17. Fang J, Wang Z, Zhao S, Li Y, Tang Z, Yu D, Ni L, Liu H, Xie P, Da L (2006) Biodiversity changes in the lakes of the Central Yangtze. Front Ecol Environ 4:369–377. doi: 10.1890/1540-9295(2006)004[0369:BCITLO]2.0.CO;2 CrossRefGoogle Scholar
  18. Fox AD, Cao L, Zhang Y, Barter M, Zhao MJ, Meng FJ, Wang SL (2011) Declines in the tuber-feeding waterbird guild at Shengjin Lake National Nature Reserve, China—a barometer of submerged macrophyte collapse. Aquat Conserv 21:82–91. doi: 10.1002/aqc.1154 CrossRefGoogle Scholar
  19. Gobal Invasive Species Database (2016) Species profile: Zizania latifolia. on 10 July 2016
  20. Hadjimitsis D, Clayton C, Hope V (2004) An assessment of the effectiveness of atmospheric correction algorithms through the remote sensing of some reservoirs. Int J Remote Sens 25:3651–3674. doi: 10.1080/01431160310001647993 CrossRefGoogle Scholar
  21. Harris J, Zhuang H (2010) An ecosystem approach to resolving conflicts among ecological and economic priorities for Poyang Lake wetlands. Unpublished report IUCN, GlandGoogle Scholar
  22. Hu C (2009) A novel ocean color index to detect floating algae in the global oceans. Remote Sens Environ 113:2118–2129. doi: 10.1016/j.rse.2009.05.012 CrossRefGoogle Scholar
  23. Huang C, Wang X, Yang H, Li Y, Wang Y, Chen X, Xu L (2014) Satellite data regarding the eutrophication response to human activities in the plateau lake Dianchi in China from 1974 to 2009. Sci Total Environ 485:1–11. doi: 10.1016/j.scitotenv.2014.03.031 CrossRefPubMedGoogle Scholar
  24. Jackson JB, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–637. doi: 10.1126/science.1059199 CrossRefPubMedGoogle Scholar
  25. Kennedy RE, Townsend PA, Gross JE, Cohen WB, Bolstad P, Wang YQ, Adams P (2009) Remote sensing change detection tools for natural resource managers: understanding concepts and tradeoffs in the design of landscape monitoring projects. Remote Sens Environ 113:1382–1396. doi: 10.1016/j.rse.2008.07.018 CrossRefGoogle Scholar
  26. Kloiber SM, Brezonik PL, Olmanson LG, Bauer ME (2002) A procedure for regional lake water clarity assessment using Landsat multispectral data. Remote Sens Environ 82:38–47. doi: 10.1016/S0034-4257(02)00022-6 CrossRefGoogle Scholar
  27. Kühl H, Zemlin R (2000) Increasing the efficiency of reed plantations on stressed lake and river shores by using special clones of Phragmites australis. Wetl Ecol Manag 8:415–424. doi: 10.1023/A:1026510018318 CrossRefGoogle Scholar
  28. Lampert W, Sommer U (2007) Limnoecology: the ecology of lakes and streams. University Press, OxfordGoogle Scholar
  29. Lei G (1999) Status of the lesser white-fronted goose in China. Fennoscandian lesser white-fronted goose conservation project annual report, pp 16–17Google Scholar
  30. Li W (1996) Yellow water in East Taihu Lake caused by Zizania latifolia and its prevention. J Lake Sci 9:364–368Google Scholar
  31. Liira J, Feldmann T, Mäemets H, Peterson U (2010) Two decades of macrophyte expansion on the shores of a large shallow northern temperate lake—a retrospective series of satellite images. Aquat Bot 93:207–215. doi: 10.1016/j.aquabot.2010.08.001 CrossRefGoogle Scholar
  32. Malthus T, Best E, Dekker A (1990) An assessment of the importance of emergent and floating-leaved macrophytes to trophic status in the Loosdrecht lakes (The Netherlands). Hydrobiologia 191:257–263. doi: 10.1007/BF00026060 CrossRefGoogle Scholar
  33. Mantero P, Moser G, Serpico SB (2005) Partially supervised classification of remote sensing images through SVM-based probability density estimation. IEEE Trans Geosci Remote 43:559–570. doi: 10.1109/TGRS.2004.842022 CrossRefGoogle Scholar
  34. Nelson SA, Cheruvelil KS, Soranno PA (2006) Satellite remote sensing of freshwater macrophytes and the influence of water clarity. Aquat Bot 85:289–298. doi: 10.1109/TGRS.2004.842022 CrossRefGoogle Scholar
  35. O’brien RM (2007) A caution regarding rules of thumb for variance inflation factors. Qual Quant 41:673–690. doi: 10.1007/s11135-006-9018-6 CrossRefGoogle Scholar
  36. Olmanson LG, Bauer ME, Brezonik PL (2008) A 20-year Landsat water clarity census of Minnesota’s 10,000 lakes. Remote Sens Environ 112:4086–4097. doi: 10.1016/j.rse.2007.12.013 CrossRefGoogle Scholar
  37. Orth RJ, Moore KA (1983) Chesapeake Bay: an unprecedented decline in submerged aquatic vegetation. Science (Washington) 222:51–53CrossRefGoogle Scholar
  38. Partanen S, Hellsten S (2005) Changes of emergent aquatic macrophyte cover in seven large boreal lakes in Finland with special reference to water level regulation. Fennia Int J Geogr 183:57–79Google Scholar
  39. Ping F, Tang X, Gao S, Luo Z (2014) A comparative study of the atmospheric circulations associated with rainy-season floods between the Yangtze and Huaihe River Basins. Sci China Ser D 57:1464–1479. doi: 10.1007/s11430-013-4802-3 CrossRefGoogle Scholar
  40. Rannap R, Lõhmus A, Jakobson K (2007) Consequences of coastal meadow degradation: the case of the natterjack toad (Bufo calamita) in Estonia. Wetlands 27:390–398. doi: 10.1672/0277-5212(2007)27[390:COCMDT]2.0.CO;2 CrossRefGoogle Scholar
  41. Rørslett B (1991) Principal determinants of aquatic macrophyte richness in northern European lakes. Aquat Bot 39:173–193. doi: 10.1016/0304-3770(91)90031-Y CrossRefGoogle Scholar
  42. Scheffer M (2004) The story of some shallow lakes. Ecology of Shallow Lakes. Springer, The Netherlands, pp 1–19. doi: 10.1007/978-1-4020-3154-0_1 CrossRefGoogle Scholar
  43. Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413:591–596. doi: 10.1038/35098000 CrossRefPubMedGoogle Scholar
  44. Scheffer M, Szabo S, Gragnani A, Van Nes EH, Rinaldi S, Kautsky N, Norberg J, Roijackers RM, Franken RJ (2003) Floating plant dominance as a stable state. Proc Natl Acad Sci USA 100:4040–4045. doi: 10.1073/pnas.0737918100 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Sculthorpe CD (1967) Biology of aquatic vascular plants. St. Martin’s, New YorkGoogle Scholar
  46. Song L (2003) A study on fishery resources of Wuchang Lake and corresponding comprehensive exploiting countermeasures. Territ Nat Resour Study 2:003Google Scholar
  47. Tsuchiya T, Shinozuka A, Ikusima I (1993) Population dynamics, productivity and biomass allocation of Zizania latifolia in an aquatic-terrestrial ecotone. Ecol Res 8:193–198. doi: 10.1007/BF02348532 CrossRefGoogle Scholar
  48. van der Heide T, van Nes EH, van Katwijk MM, Olff H, Smolders AJ (2011) Positive feedbacks in seagrass ecosystems—evidence from large-scale empirical data. PLoS ONE 6:e16504. doi: 10.1371/journal.pone.0016504 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Wang SM, Dou HS (1998) Lakes in China. Science Press, BeijingGoogle Scholar
  50. Wangjiang County Compilation Committee (1995) Wangjiang County Annals. Huangshan Publishing House, HuangshanGoogle Scholar
  51. Wood SN (2008) Fast stable direct fitting and smoothness selection for generalized additive models. J Roy Stat Soc B 70:495–518. doi: 10.1111/j.1467-9868.2007.00646.x CrossRefGoogle Scholar
  52. Wood S, Wood MS (2016) Package ‘mgcv’. R package version: 1.7–29Google Scholar
  53. Yamasaki S (1984) Role of plant aeration in zonation of Zizania latifolia and Phragmites australis. Aquat Bot 18:287–297. doi: 10.1016/0304-3770(84)90070-6 CrossRefGoogle Scholar
  54. Zhang S, Zhu H (2006) Preliminary surveys of wetland vegetation in Wuchang Lake. Anhui Agric Sci Bull 11:97Google Scholar
  55. Zhang X, Wan A, Wang H, Zhu L, Yin J, Liu Z, Yu D (2016) The overgrowth of Zizania latifolia in a subtropical floodplain lake: changes in its distribution and possible water level control measures. Ecol Eng 89:114–120. doi: 10.1016/j.ecoleng.2016.01.069 CrossRefGoogle Scholar
  56. Zhao D, Jiang H, Cai Y, An S (2012) Artificial regulation of water level and its effect on aquatic macrophyte distribution in Taihu Lake. PLoS ONE 7:e44836. doi: 10.1371/journal.pone.0044836 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Qiang Jia
    • 1
  • Lei Cao
    • 2
    Email author
  • Hervé Yésou
    • 3
  • Claire Huber
    • 3
  • Anthony David Fox
    • 4
  1. 1.School of Life SciencesUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Research Center for Eco-Environmental SciencesChinese Academy of SciencesBeijingChina
  3. 3.ICube-SERTIT, Strasbourg UniversityIllkirch GraffenstadenFrance
  4. 4.Department of BioscienceAarhus UniversityRøndeDenmark

Personalised recommendations