Aquatic Ecology

, Volume 51, Issue 1, pp 145–158 | Cite as

Influence of the colonizing substrate on diatom assemblages and implications for bioassessment: a mesocosm experiment

  • C. L. Elias
  • R. J. M. Rocha
  • M. J. Feio
  • E. Figueira
  • S. F. P. Almeida


Although diatoms are important bioindicators of ecological quality, their ecological traits are still not well understood. A major issue is that of substrate preferences, which may result in differences in production, and assemblage structure and composition, and which should therefore be taken into account for ecological quality assessment studies. Thus, in this work, the periphyton grown on sand and ceramic tiles in indoor controlled channels were compared to understand whether substrate differences lead to differences in: periphyton production (chlorophyll-a), chlorophyll-b and c concentrations, diatom assemblages (diversity-Shannon-Wiener, cell density, taxonomic composition, trait proportions), and ecological quality assessments (IPS-‘Indice de Polluosensibilité Spécifique’). A combined inoculum of periphyton from four Portuguese streams was introduced to the running channels (six sand and six tile) and left to colonize for 35 days. Epilithic (tiles) and epipsammic (sand) assemblages were sampled at days 14 and 35. We verified that there were no differences in chlorophyll-a concentration over time and between substrates. On both sampling occasions, the epipsammic assemblages had higher concentration of chlorophyll-c and diatom density but without significant differences over time in each substrate. The taxonomic composition was different between substrates and over time. However, these differences were not reflected in ecological quality assessment. The diversity was also similar between substrates in both sampling occasions, but it was higher at day 14. Mobile and stalked species were more abundant over the entire study and differed significantly between substrates, with the epipsammic assemblages presenting higher abundances of both traits. We concluded that the colonizing substrate influences diatom assemblages but not the ecological quality assessment.


Diatoms Chlorophyll Traits Mesocosm Ecological quality assessment Freshwater 



This study was possible due to the financial support of the FOUNDATION FOR SCIENCE AND TECHNOLOGY (Portugal) through the Ph.D. scholarship SFRH/BD/68973/2010 of the first author and through the strategic project UID/MAR/04292/2013 granted to MARE and UID/GEO/04035/2013 granted to GeoBioTec. We thank GeoBioTec Research Centre and Biology Department, University of Aveiro. We thank to the Engineer Acácio Pascoal from the company Gres Panaria, Portugal S.A.—LOVE TILES division for the offer of the ceramic tiles and to the company Water Technologies for all the technical and equipment support.


  1. Almeida SFP, Feio MJ (2012) DIATMOD: diatom predictive model for quality assessment of Portuguese running waters. Hydrobiologia 695:185–197. doi: 10.1007/s10750-012-1110-4 CrossRefGoogle Scholar
  2. Bere T, Tundisi JG (2011) The effects of substrate type on diatom-based multivariate water quality assessment in a tropical river (Monjolinho), São Carlos, SP, Brazil. Water Air Soil Pollut 216:391–409. doi: 10.1007/s11270-010-0540-8 CrossRefGoogle Scholar
  3. Bergey EA, Cooper JT (2015) Shifting effects of rock roughness across a benthic food web. Hydrobiologia 760:69–79. doi: 10.1007/s10750-015-2303-4 CrossRefGoogle Scholar
  4. Berthon V, Bouchez A, Rimet F (2011) Using diatom life-forms and ecological guilds to assess organic pollution and trophic level in rivers: a case study of rivers in south-eastern France. Hydrobiologia 673:259–271. doi: 10.1007/s10750-011-0786-1 CrossRefGoogle Scholar
  5. Biggs BJF (1990) Use of relative specific growth rates of periphytic diatoms to assess enrichment of a stream. New Zeal J Mar Fresh 24:9–18. doi: 10.1080/00288330.1990.9516398 CrossRefGoogle Scholar
  6. Branco D, Lima A, Almeida SFP, Figueira E (2010) Sensitivity of biochemical markers to evaluate cadmium stress in the freshwater diatom Nitzschia palea (Kützing) W. Smith. Aquat Toxicol 99:109–117. doi: 10.1016/j.aquatox.2010.04.010 CrossRefPubMedGoogle Scholar
  7. Cattaneo A, Kerimian T, Roberge M, Marty J (1997) Periphyton distribution and abundance on substrata of different size along a gradient of stream trophy. Hydrobiologia 354:101–110CrossRefGoogle Scholar
  8. CEMAGREF (1982) Etude des Méthodes Biologiques d’Appréciation Quantitative de la Qualité des Eaux. Ministère de l’Agriculture, CEMAGREF, Division Qualité des Eaux, Pêche et Pisciculture, LyonGoogle Scholar
  9. Cetin AK (2008) Epilithic, epipelic, and epiphytic diatoms in the Göksu Stream: community relationships and habitat preferences. J Fresh Ecol 23:143–149. doi: 10.1080/02705060.2008.9664565 CrossRefGoogle Scholar
  10. Dalu T, Froneman PW, Chari LD, Richoux NB (2014a) Colonisation and community structure of benthic diatoms on artificial substrates following a major flood event: A case of the Kowie River (Eastern Cape, South Africa). Water SA 40:471–480. doi: 10.4314/wsa.v40i3.10 CrossRefGoogle Scholar
  11. Dalu T, Richoux NB, Froneman PW (2014b) Using multivariate analysis and stable isotopes to assess the effects of substrate type on phytobenthos communities. Inland Waters 4:397–412. doi: 10.5268/IW-4.4.719 CrossRefGoogle Scholar
  12. Elias CL, Calapez AR, Almeida SFP, Feio MJ (2015) Determining useful benchmarks for the bioassessment of highly disturbed areas based on diatoms. Limnologica 51:83–93. doi: 10.1016/j.limno.2014.12.008 CrossRefGoogle Scholar
  13. Feio MJ, Alves T, Boavida M, Medeiros A, Graça MAS (2010) Functional indicators of stream health: a river-basin approach. Freshw Biol 55:1050–1065. doi: 10.1111/j.1365-2427.2009.02332.x CrossRefGoogle Scholar
  14. Feio MJ, Aguiar FC, Almeida SFP, Ferreira J, Ferreira MT, Elias C, Serra SRQ, Buffagni A, Cambra J, Chauvin C, Delmas F, Dörflinger G, Erba S, Flor N, Ferréol M, Germ M, Mancini L, Manolaki P, Marcheggiani S, Minciardi MR, Munné A, Papastergiadou E, Prat N, Puccinelli C, Rosebery J, Sabater S, Ciadamidaro S, Tornés E, Tziortzis I, Urbanič G, Vieira C (2014) Least disturbed condition for European Mediterranean rivers. Sci Total Environ 476–477:745–756. doi: 10.1016/j.scitotenv.2013.05.056 CrossRefPubMedGoogle Scholar
  15. Grime JP (1973) Competitive exclusion in herbaceous vegetation. Nature 242:344–347. doi: 10.1038/242344a0 CrossRefGoogle Scholar
  16. Hunt AP, Parry JD (1998) The effect of substratum roughness and river flow rate on the development of a freshwater biofilm community. Biofouling 12:287–303. doi: 10.1080/08927019809378361 CrossRefGoogle Scholar
  17. INAG IP (2009) Critérios para a classificação do estado das massas de água superficiais—Rios e Albufeiras. In: Ministério do Ambiente, do Ordenamento do Território e do Desenvolvimento Regional. Instituto da Água, IPGoogle Scholar
  18. Janauer G, Dokulil M (2006) Macrophytes and algae in running water. In: Ziglio G, Siligardi M, Flaim G (eds) Biological monitoring of rivers: applications and perspectives. Wiley, Chichester, pp 89–109. doi: 10.1002/0470863781.ch6
  19. Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1, and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanzen 167:191–194Google Scholar
  20. Kelly MG, Cazaubon A, Coring E, Dell’uomo A, Ector L, Goldsmith B, Guasch H, Hürlimann J, Jarlman A, Kawecka B, Kwandrans J, Laugaste R, Lindstrøm E-A, Leitao M, Marvan P, Padisák J, Pipp E, Prygiel J, Rott E, Sabater S, van Dam H, Vizinet J (1998) Recommendations for the routine sampling of diatoms for water quality assessments in Europe. J Appl Phycol 10:215–224CrossRefGoogle Scholar
  21. Kelly MG, Gómez-Rodríguez C, Kahlert M, Almeida SFP, Bennett C, Bottin M, Delmas F, Descy J-P, Dörflinger G, Kennedy B, Marvan P, Opatrilova L, Pardo I, Pfister P, Rosebery J, Schneider S, Vilbaste S (2012) Establishing expectations for pan-European diatom based ecological status assessments. Ecol Indic 20:177–186. doi: 10.1016/j.ecolind.2012.02.020 CrossRefGoogle Scholar
  22. Kitner M, Poulíčková A (2003) Littoral diatoms as indicators for the eutrophication of shallow lakes. Hydrobiologia 506–509:519–524CrossRefGoogle Scholar
  23. Krammer K (2000) Diatoms of Europe: diatoms of the European inland waters and comparable habitats. Vol 1. The genus Pinnularia, vol 1. ARG Gantner-Verlag KG, Ruggell, LiechtensteinGoogle Scholar
  24. Krammer K (2001) Diatoms of Europe: diatoms of the European inland waters and comparable habitats. Vol 2. Navicula sensu stricto. 10 Genera separated from Navicula sensu lato Frustulia. ARG Gantner-Verlag KG, Ruggell, LiechtensteinGoogle Scholar
  25. Krammer K (2009) Diatoms of Europe: diatoms of the European inland waters and comparable habitats. Vol 5. Amphora sensu lato, vol 5. ARG Gantner-Verlag KG, Ruggell, LiechtensteinGoogle Scholar
  26. Krammer K, Lange-Bertalot H (1986) Die Süßwasserflora von Mitteleuropa 2: Bacillariophyceae. 1 Teil: Naviculaceae. Gustav Fisher-Verlag, Stuttgart, GermanyGoogle Scholar
  27. Krammer K, Lange-Bertalot H (1988) Die Süßwasserflora von Mitteleuropa 2: Bacillariophyceae. 2 Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. Gustav Fisher-Verlag, Stuttgart, GermanyGoogle Scholar
  28. Krammer K, Lange-Bertalot H (1991a) Die Süßwasserflora von Mitteleuropa 2: Bacillariophyceae. 3 Teil: Centrales, Fragilariaceae, Eunotiaceae. Gustav Fisher-Verlag, Stuttgart, GermanyGoogle Scholar
  29. Krammer K, Lange-Bertalot H (1991b) Die Süßwasserflora von Mitteleuropa 2. Bacillariophyceae. 4 Teil: Achnanthaceae Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema. Gustav Fisher-Verlag, Stuttgart, GermanyGoogle Scholar
  30. Krejci ME, Lowe RL (1986) Importance of sand grain mineralogy and topography in determining micro-spatial distribution of epipsammic diatoms. J North Am Benthol Soc 5:211–220CrossRefGoogle Scholar
  31. Lane CM, Taffs KH, Corfield JL (2003) A comparison of diatom community structure on natural and artificial substrata. Hydrobiologia 493:65–79. doi: 10.1023/A:1025498732371 CrossRefGoogle Scholar
  32. Lecointe C, Coste M, Prygiel J (1993) Omnidia: software for taxonomy, calculation of diatom indexes and inventories management. Hydrobiologia 269:509–513CrossRefGoogle Scholar
  33. Lowe RL, Gale WF (1980) Monitoring river periphyton with artificial benthic substrates. Hydrobiologia 69:235–244. doi: 10.1007/BF00046798 CrossRefGoogle Scholar
  34. Lowe RL, Pan Y (1996) Benthic algal communities as biological indicators. In: Stevenson RJ, Bothwell ML, Lowe RL (eds) Algal ecology: freshwater benthic ecosystems. Academic, San Diego, pp 705–739CrossRefGoogle Scholar
  35. Lowe RL, Guckert JB, Belanger SE, Davidson DH, Johnson DW (1996) An evaluation of periphyton community structure and function on tile and cobble substrata in experimental stream mesocosms. Hydrobiologia 328:135–146CrossRefGoogle Scholar
  36. Manoylov KM (2009) Intra- and interspecific competition for nutrients and light in diatom cultures. J Freshw Ecol 24:145–157. doi: 10.1080/02705060.2009.9664275 CrossRefGoogle Scholar
  37. Mendes T, Almeida SFP, Feio MJ (2012) Assessment of rivers using diatoms: effect of substrate and evaluation method. Fundam Appl Limnol 179:267–279CrossRefGoogle Scholar
  38. Miller AR, Lowe RL, Rotenberry JT (1987) Sucession of diatom communities on sand grains. J Ecol 75:693–709CrossRefGoogle Scholar
  39. Ndiritu GG, Gichuki NN, Triest L (2006) Distribution of epilithic diatoms in response to environmental conditions in an urban tropical stream, Central Kenya. Biodivers Conserv 15:3267–3293. doi: 10.1007/s10531-005-0600-3 CrossRefGoogle Scholar
  40. Oemke MP, Burton TM (1986) Diatom colonization dynamics in a lotic system. Hydrobiologia 139:153–166CrossRefGoogle Scholar
  41. Potapova M, Charles DF (2005) Choice of substrate in algae-based water-quality assessment. J North Am Benthol Soc 24:415–427CrossRefGoogle Scholar
  42. Rimet F, Bouchez A (2011) Use of diatom life-forms and ecological guilds to assess pesticide contamination in rivers: lotic mesocosm approaches. Ecol Indic 11:489–499. doi: 10.1016/J.ECOLIND.2010.07.004 CrossRefGoogle Scholar
  43. Rimet F, Bouchez A (2012) Life-forms, cell-sizes and ecological guilds of diatoms in European rivers. Knowl Manag Aquat Ecosyst 406:01. doi: 10.1051/KMAE/2012018 CrossRefGoogle Scholar
  44. Rolland T, Fayolle S, Cazaubon A, Pagnetti S (1997) Methodical approach to distribution of epilithic and drifting algae communities in a French subalpine river: Inferences on water quality assessment. Aquat Sci 59:57–73CrossRefGoogle Scholar
  45. Rothfritz H, Jüttner I, Suren AM, Ormerod SJ (1997) Epiphytic and epilithic diatom communities along environmental gradients in the Nepalese Himalaya: implications for the assessment of biodiversity and water quality. Arch Hydrobiol 138:465–482Google Scholar
  46. Round FE (1991) Diatoms in river water-monitoring studies. J Appl Phycol 3:129–145CrossRefGoogle Scholar
  47. Sabater S, Gregory SV, Sedell JR (1998) Community dynamics and metabolism of benthic algae colonizing wood and rock substrata in a forest stream. J Phycol 34:561–567CrossRefGoogle Scholar
  48. Soininen J, Eloranta P (2004) Seasonal persistence and stability of diatom communities in rivers: are there habitat specific differences? Eur J Phycol 39:153–160. doi: 10.1080/0967026042000201858 CrossRefGoogle Scholar
  49. Soininen J, Könönen K (2004) Comparative study of monitoring South-Finnish rivers and streams using macroinvertebrate and benthic diatom community structure. Aquat Ecol 38:63–75CrossRefGoogle Scholar
  50. Stevenson RJ, Pan Y (1999) Assessing environmental conditions in rivers and streams with diatoms. In: Stoermer EF, Smol JP (eds) The diatoms: applications for the environmental and earth sciences. Cambridge University Press, Cambridge, pp 11–40CrossRefGoogle Scholar
  51. Townsend SA, Gell PA (2005) The role of substrate type on benthic diatom assemblages in the Daly and Roper Rivers of the Australian wet/dry tropics. Hydrobiologia 548:101–115. doi: 10.1007/s10750-005-0828-7 CrossRefGoogle Scholar
  52. Tuji A (2000) Observation of developmental processes in loosely attached diatom (Bacillariophyceae) communities. Phycol Res 48:75–84CrossRefGoogle Scholar
  53. van Dam H, Mertens A, Sinkeldam J (1994) A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Neth J Aquat Ecol 28:117–133. doi: 10.1007/BF02334251 CrossRefGoogle Scholar
  54. Winter JG, Duthie HC (2000) Stream epilithic, epipelic and epiphytic diatoms: habitat fidelity and use in biomonitoring. Aquat Ecol 34:345–353CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • C. L. Elias
    • 1
    • 2
  • R. J. M. Rocha
    • 3
  • M. J. Feio
    • 2
  • E. Figueira
    • 3
  • S. F. P. Almeida
    • 1
  1. 1.Department of Biology and GeoBioTec – GeoBioSciences, GeoTechnologies and GeoEngineering Research CentreUniversity of AveiroAveiroPortugal
  2. 2.MARE-Marine and Environmental Sciences Centre, Department of Life SciencesUniversity of CoimbraCoimbraPortugal
  3. 3.Department of Biology and CESAM – Centre for Environmental and Marine StudiesUniversity of AveiroAveiroPortugal

Personalised recommendations