Advertisement

Aquatic Ecology

, Volume 51, Issue 1, pp 117–130 | Cite as

Competition between a toxic and a non-toxic Microcystis strain under constant and pulsed nitrogen and phosphorus supply

  • Saara Suominen
  • Verena S. Brauer
  • Anne Rantala-Ylinen
  • Kaarina Sivonen
  • Teppo Hiltunen
Article

Abstract

The toxicity of a harmful algal bloom is strongly determined by the relative abundance of non-toxic and toxic genotypes and might therefore be regulated by competition for growth-limiting resources. Here, we studied how the toxic Microcystis aeruginosa strain PCC 7806 and a non-toxic mutant compete for nitrogen and phosphorus under constant and pulsed nutrient supply. Our monoculture and competition experiments show that these closely related genotypes have distinct nutrient physiologies and that they differ in their ability to compete for nitrogen and phosphorus. The toxic wild type won the competition under nitrogen limitation, while the non-toxic mutant dominated under phosphorus limitation. Pulses of both nitrogen and phosphorus increased the dominance of the toxic genotype, which lead to an even faster competitive exclusion of the non-toxic genotype under nitrogen pulses and to coexistence of both genotypes under phosphorus pulses. Our findings indicate that the genotype level dynamics driven by resource competition can be an important factor in determining cyanobacterial bloom toxicity.

Keywords

Algal toxins Droop model Harmful cyanobacteria Nutrient limitation Microcosm Microcystis aeruginosa Plankton dynamics Resource pulses Quantitative PCR 

Notes

Acknowledgments

We thank Lyudmila Saari and Matti Wahlsten for technical assistance, Prof. Elke Dittmann for providing the mutant Microcystis strain and Riitta Ilola and Jaakko Vaininpää for nutrient analysis and Jouni Jokela for advising with the analysis. We also thank Johannes Cairns for editing the language and two anonymous reviewers and editor for helpful comments. This work was funded by University of Helsinki 3-year Grant (2015–2018) to T.H. and Academy of Finland (project #106993 to T.H.).

Supplementary material

10452_2016_9603_MOESM1_ESM.docx (30 kb)
Supplementary material 1 (DOCX 29 kb)

References

  1. Alexova R, Haynes PA, Ferrari BC, Neilan BA (2011) Comparative protein expression in different strains of the bloom-forming cyanobacterium Microcystis aeruginosa. Mol Cell Proteom 10(M110):003749Google Scholar
  2. Bickel H, Lyck S, Utkilen H (2000) Energy state and toxin content: experiments on Microcystis aeruginosa (Chroococcales, Cyanophyta). Phycologia 39:212–218CrossRefGoogle Scholar
  3. Briand JF, Robillot C, Quiblier-Lloberas C, Bernard C (2002) A perennial bloom of Planktothrix agardhii (Cyanobacteria) in a shallow eutrophic French lake: limnological and microcystin production studies. Arch Hydrobiol 153:605–622CrossRefGoogle Scholar
  4. Briand E, Gugger M, François JC, Bernard C, Humbert JF, Quiblier C (2008) Temporal variation in the dynamics of potentially microcystin-productin strains in a bloom-forming Planktothrix agardhii (cyanobacterium) population. Appl Environ Microbiol 74:3839–3848CrossRefPubMedGoogle Scholar
  5. Briand E, Escoffier N, Straub C, Sabart M, Quiblier C, Humbert JF (2009) Spatiotemporal changes in the genetic diversity of a bloom-forming Microcystis aeruginosa (cyanobacteria) population. ISME J 3:419–429CrossRefPubMedGoogle Scholar
  6. Briand E, Bormans M, Quiblier C, Salençon MJ, Humbert JF (2012) Evidence of the cost of the production of microcystins by Microcystis aeruginosa under differing light and nitrate environmental conditions. PLoS One 7:e29981CrossRefPubMedPubMedCentralGoogle Scholar
  7. Briand E, Bormans M, Gugger M, Dorrestein PC, Gerwick WH (2016) Changes in secondary metabolic profiles of Microcystis aeruginosa strains in response to intraspecific interactions. Environ Microbiol 18:384–400CrossRefPubMedGoogle Scholar
  8. Brooks BW, Lazorchak JM, Howard MD, Johnson MVV, Morton SL, Perkins DA et al (2015) Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems? Environ Toxicol Chem 35:6–13CrossRefGoogle Scholar
  9. Brussaard CPD, Riegman R (1998) Influence of bacteria on phytoplankton cell mortality with phosphorus or nitrogen as the algal-growth-limiting nutrient. Aquat Microb Ecol 14:271–280CrossRefGoogle Scholar
  10. Carrillo E, Ferrero LM, Alonso-Andicoberry C, Basanta A, Martín A, López-Rodas V, Costas E (2003) Interstrain variability in toxin production in populations of the cyanobacterium Microcystis aeruginosa from water supply reservoirs of Andalusia and lagoons of Doñana National Park (southern Spain). Phycologia 42:269–274CrossRefGoogle Scholar
  11. Chorus I (2001) Environmental factors and microcystin levels in waterbodies. In: Chorus I (ed) Cyanotoxins—occurrences, causes, consequences. Springer, Berlin, pp 159–177Google Scholar
  12. Davis TW, Berry DL, Boyer GL, Gobler CJ (2009) The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae 8:715–725CrossRefGoogle Scholar
  13. Davis TW, Harke MJ, Marcoval M, Goleski J, Orano-Dawson C, Berry DL et al (2010) Effects of nitrogenous compounds and phosphorus on the growth of toxic and non-toxic strains of Microcystis during cyanobacterial blooms. Aquat Microb Ecol 61:149–162CrossRefGoogle Scholar
  14. Dittmann E, Neilan BA, Erhard M, Von Döhren H, Börner T (1997) Insertional mutagenesis of a peptide synthetase gene that is responsible for hepatotoxin production in the cyanobacterium Microcystis aeruginosa PCC 7806. Mol Microbiol 26:779–787CrossRefPubMedGoogle Scholar
  15. Downing TG, Meyer C, Gehringer MM, Van de Venter M (2005) Microcystin content of Microcystis aeruginosa is modulated by nitrogen uptake rate relative to specific growth rate or carbon fixation rate. Environ Toxicol 20:257–262CrossRefPubMedGoogle Scholar
  16. Droop MR (1973) Some thoughts on nutrient limitation in algae. J Phycol 9:264–272Google Scholar
  17. Edwards KF, Klausmeier CA, Litchman E (2011) Evidence of a three-way trade-off between nitrogen and phosphorus competitive abilities and cell size in phytoplankton. Ecology 92:2085–2095CrossRefPubMedGoogle Scholar
  18. Edwards KF, Klausmeier CA, Litchman E (2013) A three-way trade-off maintains functional diversity under variable resource supply. Am Nat 182:786–800CrossRefPubMedGoogle Scholar
  19. Fussmann GF, Ellner SP, Shertzer KW, Hairston NG Jr (2000) Crossing the Hopf bifurcation in a live predator-prey system. Science 290:1358–1360CrossRefPubMedGoogle Scholar
  20. Gobler CJ, Burkholder JM, Davis TW, Harke MJ, Johengen T, Stow CA, Van de Waal DB (2016) The dual role of nitrogen supply in controlling the growth and toxicity of cyanobacterial blooms. Harmful Algae 54:87–97CrossRefPubMedGoogle Scholar
  21. Grover JP (1988) Dynamics of competition in a variable environment: experiments with two diatom species. Ecology 69:408–417CrossRefGoogle Scholar
  22. Grover JP (1990) Resource competition in a variable environment: phytoplankton growing according to the Monod’s model. Am Nat 136:771–789CrossRefGoogle Scholar
  23. Grover JP (1991) Resource competition in a variable environment: phytoplankton growing according to the variable-internal-stores model. Am Nat 138:811–835CrossRefGoogle Scholar
  24. Grover JP (1997) Resource competition. Chapman & Hall, LondonCrossRefGoogle Scholar
  25. Harris TD, Smith VH, Graham JL, van de Waal DB, Tedesco LP, Clercin N (2016) Combined effects of nitrogen to phosphorus and nitrate to ammonia ratios on cyanobacterial metabolite concentrations in eutrophic Midwestern USA reservoirs. Inland Waters 6:199–210CrossRefGoogle Scholar
  26. Hesse K, Dittmann E, Börner T (2001) Consequences of impaired microcystin production for light-dependent growth and pigmentation of Microcystis aeruginosa PCC 7806. FEMS Microbiol Ecol 37:39–43CrossRefGoogle Scholar
  27. Hiltunen T, Jones LE, Ellner SP, Hairston NG (2013) Temporal dynamics of a simple community with intraguild predation: an experimental test. Ecology 94:773–779CrossRefGoogle Scholar
  28. Huisman J, Matthijs HCP, Visser PM, Balke H, Sigon CAM, Passarge J et al (2002) Principles of the light-limited chemostat: theory and ecological applications. Antonie Leeuwenhoek 81:117–133CrossRefPubMedGoogle Scholar
  29. Huisman J, Matthijs HCP, Visser PM (eds) (2005) Harmful cyanobacteria., Springer aquatic ecology series 3Springer, DordrechtGoogle Scholar
  30. Joehnk KD, Huisman JEF, Sharples J, Sommeijer BEN, Visser PM, Stroom JM (2008) Summer heatwaves promote blooms of harmful cyanobacteria. Glob Chang Biol 14:495–512CrossRefGoogle Scholar
  31. Kaebernick M, Neilan BA, Börner T, Dittmann E (2000) Light and the transcriptional response of the microcystin biosynthesis gene cluster. Appl Environ Microbiol 66:3387–3392CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kaplan A, Harel M, Kaplan-Levy RN, Hadas O, Sukenik A, Dittmann E (2012) The languages spoken in the water body (or the biological role of cyanobacterial toxins). Frontiers in Microbiology 3Google Scholar
  33. Kardinaal WEA, Tonk L, Janse I, Hol S, Slot P, Huisman J, Visser PM (2007) Competition for light between toxic and nontoxic strains of the harmful cyanobacterium Microcystis. Appl Environ Microbiol 73:2939–2946CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kononen K, Kuparinen J, Mäkelä K, Laanements J, Pavelson J, Nommann S (1996) Initiation of cyanobacterial blooms in a frontal region at the entrance to the Gulf of Finland, Baltic Sea. Limnol Oceanogr 41:98–112CrossRefGoogle Scholar
  35. Kotai J (1972) Instructions for preparation of modified nutrient solution Z8 for algae. Nor Inst Water Res Oslo 69:5Google Scholar
  36. Kurmayer R, Kutzenberger T (2003) Application of real-time PCR for quantification of microcystin genotypes in a population of the toxic cyanobacterium Microcystis sp. Appl Environ Microbiol 69:6723–6730CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lei L, Li C, Peng L, Han BP (2015) Competition between toxic and non-toxic Microcystis aeruginosa and its ecological implication. Ecotoxicology 24:1411–1418CrossRefPubMedGoogle Scholar
  38. Long BM, Jones GJ, Orr PT (2001) Cellular microcystin content in N-limited Microcystis aeruginosa can be predicted from growth rate. Appl Environ Microbiol 67:278–283CrossRefPubMedPubMedCentralGoogle Scholar
  39. Makower AK, Schuurmans JM, Groth D, Zilliges Y, Matthijs HC, Dittmann E (2015) Transcriptomics-aided dissection of the intracellular and extracellular roles of microcystin in Microcystis aeruginosa PCC 7806. Appl Environ Microbiol 81:544–554CrossRefPubMedPubMedCentralGoogle Scholar
  40. Mantzouki E, Visser PM, Bormans M, Ibelings BW (2015) Understanding the key ecological traits of cyanobacteria as a basis for their management and control in changing lakes. Aquat Ecol. doi: 10.1007/s10452-015-9526-3 Google Scholar
  41. Meissner S, Steinhauser D, Dittmann E (2015) Metabolomic analysis indicates a pivotal role of the hepatotoxin microcystin in high light adaptation of Microcystis. Environ Microbiol 17:1497–1509CrossRefPubMedGoogle Scholar
  42. Moisander PH, Steppe TF, Hall NS, Kuparinen J, Paerl HW (2003) Variability in nitrogen and phosphorus limitation for Baltic Sea phytoplankton during nitrogen-fixing cyanobacterial blooms. Mar Ecol Prog Ser 262:81–95CrossRefGoogle Scholar
  43. O’neil JM, Davis TW, Burford MA, Gobler CJ (2012) The rise of harmful cyanobacteria blooms: the potential role of eutrophication and climate change. Harmful Algae 14:313–334CrossRefGoogle Scholar
  44. Pacheco ABF, Guedes IA, Azevedo SM (2016) Is qPCR a reliable indicator of cyanotoxin risk in freshwater? Toxins 8(6):172CrossRefPubMedCentralGoogle Scholar
  45. Padisák J, Reynolds CS, Sommer U (eds) (1993) Intermediate disturbance hypothesis in phytoplankton ecology., Developments in hydrobiology 81Kluwer Academic Publishers, DordrechtGoogle Scholar
  46. Paerl HW, Huisman J (2008) Blooms like it hot. Science 320:57–58CrossRefPubMedGoogle Scholar
  47. Paerl HW, Huisman J (2009) Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environ Microbiol Rep 1:27–37CrossRefPubMedGoogle Scholar
  48. Paerl HW, Otten TG (2013) Harmful cyanobacterial blooms: causes, consequences, and controls. Microb Ecol 65:995–1010CrossRefPubMedGoogle Scholar
  49. Park HD (1998) Temporal variabilities of the concentrations of intra- and extracellular microcystin and toxic Microcystis species in a hypertrophic lake, Lake Suwa, Japan (1991–1994). Environ Toxicol Water Qual 13:61–72CrossRefGoogle Scholar
  50. Renaud SL, Pick FR, Fortin N (2011) Effect of Light Intensity on the Relative Dominance of Toxigenic and Nontoxigenic Strains of Microcystis aeruginosa. Appl Environ Microbiol 77(19):7016–7022CrossRefGoogle Scholar
  51. Rinta-Kanto JM, Konopko EA, DeBruyn JM, Bourbonniere RA, Boyer GL, Wilhelm SW (2009) Lake Erie Microcystis: relationship between microcystin production, dynamics of genotypes and environmental parameters in a large lake. Harmful Algae 8:665–673CrossRefGoogle Scholar
  52. Rohrlack T, Henning M, Kohl J-G (2001) Isolation and characterization of colony-forming Microcystis aeruginosa strains. In: Rohrlack T, Henning M, Kohl JG (eds) Cyanotoxins—occurrences, causes, consequences. Springer, Berlin, pp 152–158Google Scholar
  53. Sabart M, Pobel D, Briand E, Combourieu B, Salençon MJ, Humbert JF, Latour D (2010) Spatiotemporal variation in microcystin concentrations and in the proportions of microcystin-producing cells in several Microcystis aeruginosa populations. Appl Environ Microbiol 76:4750–4759CrossRefPubMedPubMedCentralGoogle Scholar
  54. Sivonen K, Jones GJ (1999) Cyanobacterial toxins. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water: A guide to their public health consequences, monitoring and management. London, Spon, pp 41–111Google Scholar
  55. Soetaert KER, Petzoldt T, Setzer RW (2010) Solving differential equations in R: package deSolve. J Stat Softw 33:1–25Google Scholar
  56. Sommer U (1984) The paradox of the plankton: fluctuations of phosphorus availability maintain diversity of phytoplankton in flow-through cultures. Limnol Oceanogr 29:633–636CrossRefGoogle Scholar
  57. Sommer U (2002) Competition and coexistence in plankton communities. In: Sommer U, Worm B (eds) Competition and coexistence, vol 161., Ecological studiesSpringer, Berlin, pp 79–108CrossRefGoogle Scholar
  58. Stal LJ, Staal M, Villbrandt M (1999) Nutrient control of cyanobacterial blooms in the Baltic Sea. Aquat Microb Ecol 18:165–173CrossRefGoogle Scholar
  59. Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, PrincetonGoogle Scholar
  60. Tilman D (1982) Resource competition and community structure. Princeton University Press, PrincetonGoogle Scholar
  61. Tonk L, Visser PM, Christiansen G, Dittmann E, Snelder EO, Wiedner C et al (2005) The microcystin composition of the cyanobacterium Planktothrix agardhii changes toward a more toxic variant with increasing light intensity. Appl Environ Microbiol 71:5177–5181CrossRefPubMedPubMedCentralGoogle Scholar
  62. Van de Waal DB, Verspagen JM, Lürling M, Van Donk E, Visser PM, Huisman J (2009) The ecological stoichiometry of toxins produced by harmful cyanobacteria: an experimental test of the carbon-nutrient balance hypothesis. Ecol Lett 12:1326–1335CrossRefPubMedGoogle Scholar
  63. Van de Waal DB, Ferreruela G, Tonk L, Van Donk E, Huisman J, Visser PM, Matthijs HC (2010) Pulsed nitrogen supply induces dynamic changes in the amino acid composition and microcystin production of the harmful cyanobacterium Planktothrix agardhii. FEMS Microbiol Ecol 74:430–438CrossRefPubMedGoogle Scholar
  64. Van de Waal DB, Verspagen JM, Finke JF, Vournazou V, Immers AK, Kardinaal WEA et al (2011) Reversal in competitive dominance of a toxic versus non-toxic cyanobacterium in response to rising CO2. ISME J 5:1438–1450CrossRefPubMedPubMedCentralGoogle Scholar
  65. Verspagen JM, Van de Waal DB, Finke JF, Visser PM, Van Donk E, Huisman J (2014) Rising CO2 levels will intensify phytoplankton blooms in eutrophic and hypertrophic lakes. PLoS One 9:e104325CrossRefPubMedPubMedCentralGoogle Scholar
  66. Vézie C, Rapala J, Vaitomaa J, Seitsonen J, Sivonen K (2002) Effect of nitrogen and phosphorus on growth of toxic and nontoxic Microcystis strains and on intracellular microcystin concentrations. Microb Ecol 43:443–454CrossRefPubMedGoogle Scholar
  67. Walve J, Larsson U (2007) Blooms of Baltic Sea Aphanizomenon sp. (cyanobacteria) collapse after internal phosphorus depletion. Aquat Microb Ecol 49:57–69CrossRefGoogle Scholar
  68. Welker M, Von Döhren H, Täuscher H, Steinberg CE, Erhard M (2003) Toxic Microcystis in shallow lake Müggelsee (Germany): dynamics, distribution, diversity. Arch Hydrobiol 157:227–248CrossRefGoogle Scholar
  69. Wiedner C, Nixdorf B, Heinze R, Wirsing B, Neumann U, Weckesse J (2002) Regulation of cyanobacteria and microcystin dynamics in polymictic shallow lakes. Arch Hydrobiol 155:383–400CrossRefGoogle Scholar
  70. Wilken S, Verspagen JMH, Naus-Wiezer S, van Donk E, Huisman J (2013) Comparison of predator-prey interactions with and without intraguild predation by manipulation of the nitrogen source. Oikos 123:423–432CrossRefGoogle Scholar
  71. Yoshida M, Yoshida T, Takashima Y, Kondo R, Hiroishi S (2005) Genetic diversity of the toxic cyanobacterium Microcystis in Lake Mikata. Environ Toxicol 20:229–234. doi: 10.1002/tox.20102 CrossRefPubMedGoogle Scholar
  72. Zilliges Y, Kehr JC, Meissner S, Ishida K, Mikkat S, Hagemann M et al (2011) The cyanobacterial hepatotoxin microcystin binds to proteins and increases the fitness of Microcystis under oxidative stress conditions. PLoS One 6:e17615CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Food and Environmental Sciences/Microbiology and BiotechnologyUniversity of HelsinkiHelsinkiFinland
  2. 2.Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
  4. 4.Biofilm CentreUniversity of Duisburg-EssenEssenGermany

Personalised recommendations