Aquatic Ecology

, Volume 51, Issue 1, pp 91–105 | Cite as

Short-term interactive effects of ultraviolet radiation, carbon dioxide and nutrient enrichment on phytoplankton in a shallow coastal lagoon

  • Rita B. Domingues
  • Cátia C. Guerra
  • Helena M. Galvão
  • Vanda Brotas
  • Ana B. Barbosa


The main goal of this study was to evaluate short-term interactions between increased CO2, UVR and inorganic macronutrients (N, P and Si) on summer phytoplankton assemblages in the Ria Formosa coastal lagoon (SW Iberia), subjected to intense anthropogenic pressures and highly vulnerable to climate change. A multifactorial experiment using 20 different nutrient-enriched microcosms exposed to different spectral and CO2 conditions was designed. Before and after a 24-h in situ incubation, phytoplankton abundance and composition were analysed. Impacts and interactive effects of high CO2, UVR and nutrients varied among different functional groups. Increased UVR had negative effects on diatoms and cyanobacteria and positive effects on cryptophytes, whereas increased CO2 inhibited cyanobacteria but increased cryptophyte growth. A positive synergistic interaction between CO2 and UVR was observed for diatoms; high CO2 counteracted the negative effects of UVR under ambient nutrient concentrations. Nutrient enrichments suppressed the negative effects of high CO2 and UVR on cyanobacteria and diatoms, respectively. Beneficial effects of CO2 were observed for diatoms and cryptophytes under combined additions of nitrate and ammonium, suggesting that growth may be limited by DIC availability when the primary limitation by nitrogen is alleviated. Beneficial effects of high CO2 and UVR in diatoms were also induced or intensified by ammonium additions.


Nutrient limitation Stress responses Ultraviolet radiation Acidification Coastal lagoons 



This work was financially supported by the Portuguese Foundation for Science and Technology (FCT) through project PHYTORIA (PTDC/MAR/114380/2009). FCT provided funding for RBD through a postdoctoral fellowship (SFRH/BPD/68688/2010).


  1. Andrade C, Freitas MC, Moreno J, Craveiro SC (2004) Stratigraphical evidence of Late Holocene barrier breaching and extreme storms in lagoonal sediments of Ria Formosa. Mar Geol 210:339–362CrossRefGoogle Scholar
  2. Badger MR, Price GD, Long BM, Woodger FJ (2006) The environmental plasticity and ecological genomics of the cyanobacterial CO2 concentrating mechanism. J Exp Bot 57:249–265. doi: 10.1093/jxb/eri286 CrossRefPubMedGoogle Scholar
  3. Banaszak AT, Neale PJ (2001) UV sensitivity of photosynthesis in phytoplankton from an estuarine environment. Limnol Oceanogr 46:592–600CrossRefGoogle Scholar
  4. Barbosa AB (2006) Estrutura e dinâmica da teia alimentar microbiana na Ria Formosa (Structure and dynamics of the microbial food web in the Ria Formosa). Ph.D. Thesis. University of Algarve, 518 pGoogle Scholar
  5. Barbosa AB (2010) Seasonal and interannual variability of planktonic microbes in a mesotidal coastal lagoon (Ria Formosa, SE Portugal). Impact of climatic changes and local human influences. In: Kennish MJ, Paerl HW (eds) Coastal lagoons: critical habitats of environmental change. CRC Press, Boca Raton, pp 334–366Google Scholar
  6. Beardall J, Sobrino C, Stojkovic S (2009a) Interactions between the impacts of ultraviolet radiation, elevated CO2, and nutrient limitation on marine primary producers. Photochem Photobiol Sci 8:1257–1265. doi: 10.1039/b9pp00034h CrossRefPubMedGoogle Scholar
  7. Beardall J, Stojkovic S, Larsen S (2009b) Living in a high CO2 world: impacts of global climate change on marine phytoplankton. Plant Ecol Divers 2:191–205. doi: 10.1080/17550870903271363 CrossRefGoogle Scholar
  8. Berge T, Daugbjerg N, Andersen B, Hansen P (2010) Effect of lowered pH on marine phytoplankton growth rates. Mar Ecol Prog Ser 416:79–91CrossRefGoogle Scholar
  9. Bouvy M, Bettarel Y, Bouvier C et al (2011) Trophic interactions between viruses, bacteria and nanoflagellates under various nutrient conditions and simulated climate change. Environ Microbiol 13:1842–1857. doi: 10.1111/j.1462-2920.2011.02498.x CrossRefPubMedGoogle Scholar
  10. Boyd P, Hutchins D (2012) Understanding the responses of ocean biota to a complex matrix of cumulative anthropogenic change. Mar Ecol Prog Ser 470:125–135. doi: 10.3354/meps10121 CrossRefGoogle Scholar
  11. Carrillo P, Delgado-Molina JA, Medina-Sánchez JM et al (2008) Phosphorus inputs unmask negative effects of ultraviolet radiation on algae in a high mountain lake. Glob Chang Biol 14:423–439. doi: 10.1111/j.1365-2486.2007.01496.x CrossRefGoogle Scholar
  12. Chen S, Gao K (2011) Solar ultraviolet radiation and CO2-induced ocean acidification interacts to influence the photosynthetic performance of the red tide alga Phaeocystis globosa (Prymnesiophyceae). Hydrobiologia 675:105–117. doi: 10.1007/s10750-011-0807-0 CrossRefGoogle Scholar
  13. Collins S (2011) Many possible worlds: expanding the ecological scenarios in experimental evolution. Evol Biol 38:3–14. doi: 10.1007/s11692-010-9106-3 CrossRefGoogle Scholar
  14. Collins S, Rost B, Rynearson TA (2014) Evolutionary potential of marine phytoplankton under ocean acidification. Evol Appl 7:140–155. doi: 10.1111/eva.12120 CrossRefPubMedGoogle Scholar
  15. Crain CM, Kroeker K, Halpern BS (2008) Interactive and cumulative effects of multiple human stressors in marine systems. Ecol Lett 11:1304–1315. doi: 10.1111/j.1461-0248.2008.01253.x CrossRefPubMedGoogle Scholar
  16. Cravo A, Cardeira S, Pereira C et al (2014) Exchanges of nutrients and chlorophyll a through two inlets of Ria Formosa, South of Portugal, during coastal upwelling events. J Sea Res 93:63–74. doi: 10.1016/j.seares.2014.04.004 CrossRefGoogle Scholar
  17. Domingues RB, Barbosa A, Galvão H (2008) Constraints on the use of phytoplankton as a biological quality element within the Water Framework Directive in Portuguese waters. Mar Pollut Bull 56:1389–1395. doi: 10.1016/j.marpolbul.2008.05.006 CrossRefPubMedGoogle Scholar
  18. Domingues RB, Guerra CC, Barbosa AB et al (2014) Effects of ultraviolet radiation and CO2 increase on winter phytoplankton assemblages in a temperate coastal lagoon. J Plankton Res 36:672–684. doi: 10.1093/plankt/fbt135 CrossRefGoogle Scholar
  19. Domingues RB, Guerra CC, Barbosa AB, Galvão HM (2015) Are nutrients and light limiting summer phytoplankton in a temperate coastal lagoon? Aquat Ecol 49:127–146. doi: 10.1007/s10452-015-9512-9 CrossRefGoogle Scholar
  20. Doyle SA, Saros JE, Williamson CE (2005) Interactive effects of temperature and nutrient limitation on the response of alpine phytoplankton growth to ultraviolet radiation. Limnol Oceanogr 50:1362–1367. doi: 10.4319/lo.2005.50.5.1362 CrossRefGoogle Scholar
  21. Dytham C (2003) Choosing and using statistics: a biologist’s guide, 2nd edn. Blackwell, OxfordGoogle Scholar
  22. Endo H, Yoshimura T, Kataoka T, Suzuki K (2013) Effects of CO2 and iron availability on phytoplankton and eubacterial community compositions in the northwest subarctic Pacific. J Exp Mar Bio Ecol 439:160–175. doi: 10.1016/j.jembe.2012.11.003 CrossRefGoogle Scholar
  23. Feng Y, Hare CE, Rose JM et al (2010) Interactive effects of iron, irradiance and CO2 on Ross Sea phytoplankton. Deep Res Part I Oceanogr Res Pap 57:368–383. doi: 10.1016/j.dsr.2009.10.013 CrossRefGoogle Scholar
  24. Fu F-X, Warner ME, Zhang Y et al (2007) Effects of increased temperature and CO2 on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (cyanobacteria). J Phycol 43:485–496. doi: 10.1111/j.1529-8817.2007.00355.x CrossRefGoogle Scholar
  25. Fu F, Mulholland MR, Garcia NS et al (2008) Interactions between changing pCO2, N2 fixation, and Fe limitation in the marine unicellular cyanobacterium Crocosphaera. Limnol Oceanogr 53:2472–2484CrossRefGoogle Scholar
  26. Fu FX, Place AR, Garcia NS, Hutchins DA (2010) CO2 and phosphate availability control the toxicity of the harmful bloom dinoflagellate Karlodinium veneficum. Aquat Microb Ecol 59:55–65. doi: 10.3354/ame01396 CrossRefGoogle Scholar
  27. Gao K, Campbell DA (2014) Photophysiological responses of marine diatoms to elevated CO2 and decreased pH: a review. Funct Plant Biol 41:449–459. doi: 10.1071/FP13247 CrossRefGoogle Scholar
  28. Gao K, Wu Y, Li G et al (2007) Solar UV radiation drives CO2 fixation in marine phytoplankton: a double-edged sword. Plant Physiol 144:54–59. doi: 10.1104/pp.107.098491 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Gao K, Ruan Z, Villafañe VE et al (2009) Ocean acidification exacerbates the effect of UV radiation on the calcifying phytoplankter Emiliania huxleyi. Limnol Oceanogr 54:1855–1862CrossRefGoogle Scholar
  30. Gao K, Helbling E, Häder D-P, Hutchins D (2012a) Responses of marine primary producers to interactions between ocean acidification, solar radiation, and warming. Mar Ecol Prog Ser 470:167–189. doi: 10.3354/meps10043 CrossRefGoogle Scholar
  31. Gao K, Xu J, Gao G et al (2012b) Rising CO2 and increased light exposure synergistically reduce marine primary productivity. Nat Clim Chang 2:1–5. doi: 10.1038/nclimate1507 CrossRefGoogle Scholar
  32. García-Gómez C, Gordillo FJL, Palma A et al (2014) Elevated CO2 alleviates high PAR and UV stress in the unicellular chlorophyte Dunaliella tertiolecta. Photochem Photobiol Sci 13:1347. doi: 10.1039/C4PP00044G CrossRefPubMedGoogle Scholar
  33. Garcia-Pichel F (1994) A model for internal self-shading in planktonic organisms and its implications for the usefulness of ultraviolet sunscreens. Limnol Oceanogr 39:1704–1717. doi: 10.4319/lo.1994.39.7.1704 CrossRefGoogle Scholar
  34. Gattuso J-P, Gao K, Lee K, et al (2010) Approaches and tools to manipulate the carbonate chemistry. In: Riebesell U, Fabry VJ, Hansson L, Gattuso J-P (eds) Guide to best practices ocean acidification research. Data Report. Publications Office of the European Union, pp 41–52Google Scholar
  35. Gerber S, Häder DP (1995) Effects of enhanced solar irradiation on chlorophyll fluorescence and photosynthetic oxygen production of 5 species of phytoplankton. FEMS Microbiol Ecol 16:33–41CrossRefGoogle Scholar
  36. Grasshoff K, Ehrhardt M, Kremling K (1983) Methods of seawater analysis. Verlag Chemie, WeinheimGoogle Scholar
  37. Haas LW (1982) Improved epifluorescence microscopy for observing planktonic micro-organisms. Ann l’Institut Oceanogr 58:261–266Google Scholar
  38. Heraud P, Roberts S, Shelly K, Beardall J (2005) Interactions between UV-B exposure and phosphorus nutrition. II. Effects on rates of damage and repair. J Phycol 41:1212–1218. doi: 10.1111/j.1529-8817.2005.00149.x CrossRefGoogle Scholar
  39. Hutchins DA, Fu F-X, Zhang Y et al (2007) CO2 control of trichodesmium N2 fixation, photosynthesis, growth rates, and elemental ratios: implications for past, present, and future ocean biogeochemistry. Limnol Oceanogr 52:1293–1304. doi: 10.4319/lo.2007.52.4.1293 CrossRefGoogle Scholar
  40. Ingalls AE, Whitehead K, Bridoux MC (2010) Tinted windows: the presence of the UV absorbing compounds called mycosporine-like amino acids embedded in the frustules of marine diatoms. Geochem Cosmochim Acta 74:104–115CrossRefGoogle Scholar
  41. IPCC (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, GenevaGoogle Scholar
  42. Li G, Campbell DA (2013) Rising CO2 interacts with growth light and growth rate to alter photosystem II photoinactivation of the coastal diatom Thalassiosira pseudonana. PLoS ONE 8:e55562. doi: 10.1371/journal.pone.0055562 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Li G, Gao K (2014) Effects of solar UV radiation on photosynthetic performance of the diatom Skeletonema costatum grown under nitrate limited condition. Algae 29:27–34CrossRefGoogle Scholar
  44. Li Y, Gao K, Villafañe VE, Helbling EW (2012) Ocean acidification mediates photosynthetic response to UV radiation and temperature increase in the diatom Phaeodactylum tricornutum. Biogeosci Discuss 9:7197–7226. doi: 10.5194/bgd-9-7197-2012 CrossRefGoogle Scholar
  45. Litchman E, Neale PJ, Banaszak AT (2002) Increased sensitivity to ultraviolet radiation in nitrogen-limited dinoflagellates: photoprotection and repair. Limnol Oceanogr 47:86–94. doi: 10.4319/lo.2002.47.1.0086 CrossRefGoogle Scholar
  46. Litchman E, Edwards K, Klausmeier C, Thomas M (2012) Phytoplankton niches, traits and eco-evolutionary responses to global environmental change. Mar Ecol Prog Ser 470:235–248. doi: 10.3354/meps09912 CrossRefGoogle Scholar
  47. Llabrés M, Agustí S, Alonso-Laita P, Herndl G (2010) Synechococcus and Prochlorococcus cell death induced by UV radiation and the penetration of lethal UVR in the Mediterranean Sea. Mar Ecol Prog Ser 399:27–37. doi: 10.3354/meps08332 CrossRefGoogle Scholar
  48. Lohbeck KT, Riebesell U, Reusch TBH (2012) Adaptive evolution of a key phytoplankton species to ocean acidification. Nat Geosci 5:346–351. doi: 10.1038/ngeo1441 CrossRefGoogle Scholar
  49. Loureiro S, Newton A, Icely J (2005) Effects of nutrient enrichments on primary production in the Ria Formosa coastal lagoon (Southern Portugal). Hydrobiologia 550:29–45. doi: 10.1007/s10750-005-4357-1 CrossRefGoogle Scholar
  50. Machado LM (2010) A radiação UV-B na Ria Formosa: incidência e impactes biológicos. University of Algarve, FaroGoogle Scholar
  51. Medina-Sánchez JM, Villar-Argaiz M, Carrillo P (2006) Solar radiation-nutrient interaction enhances the resource and predation algal control on bacterioplankton: a short-term experimental study. Limnol Oceanogr 51:913–924. doi: 10.4319/lo.2006.51.2.0913 CrossRefGoogle Scholar
  52. Neale PJ, Cullen JJ, Davis RF (1998) Inhibition of marine photosynthesis by ultraviolet radiation: variable sensitivity of phytoplankton in the Wedell-Scotia Confluence during the austral spring. Limnol Oceanogr 43:433–448CrossRefGoogle Scholar
  53. Neale P, Sobrino C, Segovia M et al (2014) Effect of CO2, nutrients and light on coastal plankton. I. Abiotic conditions and biological responses. Aquat Biol 22:25–41. doi: 10.3354/ab00587 CrossRefGoogle Scholar
  54. Newton A, Mudge SM (2003) Temperature and salinity regimes in a shallow, mesotidal lagoon, the Ria Formosa, Portugal. Estuar Coast Shelf Sci 57:73–85. doi: 10.1016/S0272-7714(02)00332-3 CrossRefGoogle Scholar
  55. Newton A, Icely JD, Falcao M et al (2003) Evaluation of eutrophication in the Ria Formosa coastal lagoon, Portugal. Cont Shelf Res 23:1945–1961. doi: 10.1016/j.csr.2003.06.008 CrossRefGoogle Scholar
  56. Nielsen LT, Jakobsen HH, Hansen PJ (2010) High resilience of two coastal plankton communities to twenty-first century seawater acidification: evidence from microcosm studies. Mar Biol Res 6:542–555. doi: 10.1080/17451000903476941 CrossRefGoogle Scholar
  57. Nielsen L, Hallegraeff G, Wright S, Hansen P (2012) Effects of experimental seawater acidification on an estuarine plankton community. Aquat Microb Ecol 65:271–286. doi: 10.3354/ame01554 CrossRefGoogle Scholar
  58. Nogueira P, Domingues RB, Barbosa AB (2014) Are microcosm volume and sample pre-filtration relevant to evaluate phytoplankton growth? J Exp Mar Bio Ecol 461:323–330. doi: 10.1016/j.jembe.2014.09.006 CrossRefGoogle Scholar
  59. Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press, New YorkGoogle Scholar
  60. Paulino AI, Egge JK, Larsen A (2008) Effects of increased atmospheric CO2 on small and intermediate sized osmotrophs during a nutrient induced phytoplankton bloom. Biogeosciences 5:739–748. doi: 10.5194/bg-5-739-2008 CrossRefGoogle Scholar
  61. Piggott JJ, Townsend CR, Matthaei CD (2015) Reconceptualizing synergism and antagonism among multiple stressors. Ecol Evol 5:1538–1547. doi: 10.1002/ece3.1465 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Rastogi RP, Sinha RP, Moh SH et al (2014) Ultraviolet radiation and cyanobacteria. J Photochem Photobiol B Biol 141:154–169. doi: 10.1016/j.jphotobiol.2014.09.020 CrossRefGoogle Scholar
  63. Reul A, Muñoz M, Bautista B et al (2014) Effect of CO2, nutrients and light on coastal plankton. III. Trophic cascade, size structure and composition. Aquat Biol 22:59–76. doi: 10.3354/ab00585 CrossRefGoogle Scholar
  64. Reusch TBH, Boyd PW (2013) Experimental evolution meets marine phytoplankton. Evolution (NY) 67:1849–1859. doi: 10.1111/evo.12035 CrossRefGoogle Scholar
  65. Sala MM, Aparicio FL, Balagué V et al (2015) Contrasting effects of ocean acidification on the microbial food web under different trophic conditions. ICES J. Mar, SciGoogle Scholar
  66. Schlüter L, Lohbeck KT, Gutowska MA et al (2014) Adaptation of a globally important coccolithophore to ocean warming and acidification. Nat Clim Chang 4:1024–1030. doi: 10.1038/nclimate2379 CrossRefGoogle Scholar
  67. Shelly K, Heraud P, Beardall J (2002) Nitrogen limitation in Dunaliella tertiolecta Butcher (Chlorophyceae) leads to increased susceptibility to damage by ultraviolet-B radiation but also increased repair capacity. J Phycol 38:1–8CrossRefGoogle Scholar
  68. Sobrino C, Montero O, Lubián L (2005) Effect of UV-A and UV-B on diel patterns of growth and metabolic activity in Nannochloris atomus cultures assessed by flow cytometry. Mar Ecol Prog Ser 293:29–35. doi: 10.3354/meps293029 CrossRefGoogle Scholar
  69. Sobrino C, Ward ML, Neale PJ (2008) Acclimation to elevated carbon dioxide and ultraviolet radiation in the diatom Thalassiosira pseudonana: effects on growth, photosynthesis, and spectral sensitivity of photoinhibition. Limnol Oceanogr 53:494–505CrossRefGoogle Scholar
  70. Sobrino C, Neale PJ, Phillips-Kress JD et al (2009) Elevated CO2 increases sensitivity to ultraviolet radiation in lacustrine phytoplankton assemblages. Limnol Oceanogr 54:2448–2459CrossRefGoogle Scholar
  71. Sobrino C, Segovia M, Neale P et al (2014) Effect of CO2, nutrients and light on coastal plankton. IV. Physiological responses. Aquat Biol 22:77–93. doi: 10.3354/ab00590 CrossRefGoogle Scholar
  72. Stramma L, Cornillon P, Weller RA et al (1986) Large diurnal sea surface temperature variability: satellite and in situ measurements. J Phys Oceanogr 56:345–358. doi: 10.1175/1520-0485(1986)016<0827:LDSSTV>2.0.CO;2 Google Scholar
  73. Stuart-Menteth AC, Robinson IS, Challenor PG (2003) A global study of diurnal warming using satellite-derived sea surface temperature. J Geophys Res 108:3155. doi: 10.1029/2002JC001534 CrossRefGoogle Scholar
  74. Sun J, Hutchins DA, Feng Y et al (2011) Effects of changing pCO2 and phosphate availability on domoic acid production and physiology of the marine harmful bloom diatom Pseudo-nitzschia multiseries. Limnol Oceanogr 56:829–840. doi: 10.4319/lo.2011.56.3.0829 CrossRefGoogle Scholar
  75. Tatters AO, Fu FX, Hutchins DA (2012) High CO2 and silicate limitation synergistically increase the toxicity of Pseudo-nitzschia fraudulenta. PLoS ONE 7:e32116. doi: 10.1371/journal.pone.0032116 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Timmermans KR, van der Wagt B, Veldhuis MJW et al (2005) Physiological responses of three species of marine pico-phytoplankton to ammonium, phosphate, iron and light limitation. J Sea Res 53:109–120. doi: 10.1016/j.seares.2004.05.003 CrossRefGoogle Scholar
  77. Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt Int Ver Theor und Angew Limnol 9:1–38Google Scholar
  78. van de Poll WH, van Leewe MA, Roggeveld J, Buma AGJ (2005) Nutrient limitation and high irradiance acclimation reduce PAR and UV-induced viability loss in the Antarctic diatom Chaetoceros brevis (Bacillariophyceae). J Phycol 41:840–850CrossRefGoogle Scholar
  79. Varona-Cordero F, Gutiérrez-Mendieta FJ, Rivera-Monroy VH (2014) in situ response of phytoplankton to nutrient additions in a Tropical Coastal Lagoon, (La Mancha, Veracruz, Mexico). Estuar Coasts 37:1353–1375. doi: 10.1007/s12237-014-9806-5 CrossRefGoogle Scholar
  80. Venrick EL (1978) How many cells to count? In: Sournia A (ed) Phytoplankt. Man. UNESCO, Paris, pp 167–180Google Scholar
  81. Wu Y, Gao K, Riebesell U (2010) CO2-induced seawater acidification affects physiological performance of the marine diatom Phaeodactylum tricornutum. Biogeosciences 7:2915–2923. doi: 10.5194/bg-7-2915-2010 CrossRefGoogle Scholar
  82. Wu X, Gao G, Giordano M, Gao K (2012) Growth and photosynthesis of a diatom grown under elevated CO2 in the presence of solar UV radiation. Fundam Appl Limnol/Arch für Hydrobiol 180:279–290. doi: 10.1127/1863-9135/2012/0299 CrossRefGoogle Scholar
  83. Wu Y, Campbell DA, Gao K (2014) Faster recovery of a diatom from UV damage under ocean acidification. J Photochem Photobiol B Biol 140:249–254. doi: 10.1016/j.jphotobiol.2014.08.006 CrossRefGoogle Scholar
  84. Xenopoulos MA, Frost PC (2003) UV radiation, phosphorus, and their combined effects on the taxonomic composition of phytoplankton in a Boreal Lake 1. J Phycol 302:291–302CrossRefGoogle Scholar
  85. Xu Z, Gao K (2012) NH4+ enrichment and UV radiation interact to affect the photosynthesis and nitrogen uptake of Gracilaria lemaneiformis (Rhodophyta). Mar Pollut Bull 64:99–105. doi: 10.1016/j.marpolbul.2011.10.016 CrossRefPubMedGoogle Scholar
  86. Zudaire L, Roy S (2001) Photoprotection and long-term acclimation to UV radiation in the marine diatom Thalassiosira weisflogii. J Photochem Photobiol B Biol 62:26–34CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.CIMA - Centre for Marine and Environmental ResearchUniversidade do AlgarveFaroPortugal
  2. 2.MARE - Marine and Environmental Sciences Centre, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal

Personalised recommendations