Aquatic Ecology

, Volume 51, Issue 1, pp 59–72 | Cite as

Elevated carbon dioxide has the potential to impact alarm cue responses in some freshwater fishes

  • John A. Tix
  • Caleb T. Hasler
  • Cody Sullivan
  • Jennifer D. Jeffrey
  • Cory D. SuskiEmail author


Freshwater fish behaviors have the potential to be impacted by acidification due to increases in dissolved carbon dioxide (CO2). Recent work in the marine environment suggests that increased CO2 levels due to climate change can negatively affect fishes homing to natal environments, while also hindering their ability to detect predators and perform aerobically. The potential for elevated CO2 to have similar negative impacts on freshwater communities remains understudied. The objective of our study was to quantify the effects of elevated CO2 on the behaviors of fathead minnows (Pimephales promelas) and silver carp (Hypophthalmichthys molitrix) following exposure to conspecific skin extracts (alarm cues). In fathead minnows, their response to conspecific skin extracts was significantly impaired following exposure to elevated CO2 levels for at least 96 h, while silver carp behaviors were unaltered. However, fathead minnow behaviors did return to pre-CO2 exposure in high-CO2-exposed fish following 14 days of holding at ambient CO2 levels. Overall, this study suggests there may be potential impacts to freshwater fishes alarm cue behaviors following CO2 exposure, but these responses may be species-specific and will likely be abated should the CO2 stressor be removed.


Acidification Olfaction Climate change Behavior Fathead minnows Silver carp 



This work was supported by the Illinois Department of Natural Resources through funds provided by the US Environmental Protection Agency’s Great Lakes Restoration Initiative, as well as the Illinois Chapter of the American Fisheries Society. The Upper Midwest Environmental Sciences Center (UMESC) provided laboratory space and silver carp for experiments. All work performed in this study conformed to guidelines established by the Institutional Animal Care and Use Committee (IACUC) of the University of Illinois (Protocol #14168).

Supplementary material

10452_2016_9598_MOESM1_ESM.docx (31 kb)
Supplementary material 1 (DOCX 31 kb)


  1. Allan BJ, Domenici P, McCormick MI, Watson S, Munday PL (2013) Elevated CO2 affects predator–prey interactions through altered performance. PLoS One 8:e58520. doi: 10.1371/journal.pone.0058520 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Anscombe FJ, Tukey JW (1963) The examination and analysis of residuals. Technometrics 5:141–160. doi: 10.1080/00401706.1963.10490071 CrossRefGoogle Scholar
  3. Arneth A, Harrison SP, Zaehle S, Tsigaridis K, Menon S, Bartlein PJ (2010) Terrestrial biogeochemical feedbacks in the climate system. Nat Geosci 3:525–532. doi: 10.1038/ngeo905 CrossRefGoogle Scholar
  4. Bates DM (2010) Lme4: mixed-effects modeling with R. Springer, BerlinGoogle Scholar
  5. Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MH, White JS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135. doi: 10.1016/j.tree.2008.10.008 CrossRefPubMedGoogle Scholar
  6. Brown GE, Adrian JC Jr, Smyth E, Leet H, Brennan S (2000) Ostariophysan alarm pheromones: laboratory and field tests of the functional significance of nitrogen oxides. J Chem Ecol 26:139–154. doi: 10.1023/A:1005445629144 CrossRefGoogle Scholar
  7. Brown GE, Adrian JC Jr, Lewis MG, Tower JM (2002) The effects of reduced pH on chemical alarm signalling in ostariophysan fishes. Can J Fish Aquat Sci 59:1331–1338. doi: 10.1139/f02-104 CrossRefGoogle Scholar
  8. Chivers DP, Smith RJF (1994) The role of experience and chemical alarm signalling in predator recognition by fathead minnows, Pimephales promelas. J Fish Biol 44:273–285. doi: 10.1111/j.1095-8649.1994.tb01205.x CrossRefGoogle Scholar
  9. Chivers DP, Smith RJF (1998) Chemical alarm signaling in aquatic predator–prey systems: a review and prospectus. Ecoscience 5:338–352CrossRefGoogle Scholar
  10. Chown SL, Gaston KJ (2015) Macrophysiology—progress and prospects. Funct Ecol 30:330–344. doi: 10.1111/1365-2435.12510 CrossRefGoogle Scholar
  11. Ciais P, Sabine CL, Bala G, Bopp L, Brovkin V, Canadell J (2013) Carbon and other biogeochemical cycles. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the 5th assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 465–570Google Scholar
  12. Cole JJ, Caraco NF, Kling GW, Kratz TK (1994) Carbon dioxide supersaturation in the surface waters of lakes. Science 265:1568–1570. doi: 10.1126/science.265.5178.1568 CrossRefPubMedGoogle Scholar
  13. Colt J, Orwicz K (1991) Modeling production capacity of aquatic culture systems under freshwater conditions. Aquac Eng 10:1–29. doi: 10.1016/0144-8609(91)90008-8 CrossRefGoogle Scholar
  14. Cripps IL, Munday PL, McCormick MI (2011) Ocean acidification affects prey detection by a predatory reef fish. PLoS One 6:e22736. doi: 10.1371/journal.pone.0022736 CrossRefPubMedPubMedCentralGoogle Scholar
  15. De Robertis A, Ryer CH, Veloza A, Brodeur RD (2003) Differential effects of turbidity on prey consumption of piscivorous and planktivorous fish. Can J Fish Aquat Sci 60:1517–1526. doi: 10.1139/f03-123 CrossRefGoogle Scholar
  16. Dittman A, Quinn T (1996) Homing in Pacific salmon: mechanisms and ecological basis. J Exp Biol 199:83–91PubMedGoogle Scholar
  17. Dixson DL, Munday PL, Jones GP (2010) Ocean acidification disrupts the innate ability of fish to detect predator olfactory cues. Ecol Lett 13:68–75. doi: 10.1111/j.1461-0248.2009.01400.x CrossRefPubMedGoogle Scholar
  18. Dunson W, Swarts F, Silvestri M (1977) Exceptional tolerance to low pH of some tropical blackwater fish. J Exp Zool 201:157–162. doi: 10.1002/jez.1402010202 CrossRefGoogle Scholar
  19. Engqvist L (2005) The mistreatment of covariate interaction terms in linear model analyses of behavioural and evolutionary ecology studies. Anim Behav 70:967–971. doi: 10.1016/j.anbehav.2005.01.016 CrossRefGoogle Scholar
  20. Ferrari MC, McCormick MI, Munday PL, Meekan MG, Dixson DL, Lonnstedt O, Chivers DP (2011) Putting prey and predator into the CO2 equation—qualitative and quantitative effects of ocean acidification on predator–prey interactions. Ecol Lett 14:1143–1148. doi: 10.1111/j.1461-0248.2011.01683.x CrossRefPubMedGoogle Scholar
  21. Ferrari MC, McCormick MI, Munday PL, Meekan MG, Dixson DL, Lönnstedt O, Chivers DP (2012) Effects of ocean acidification on visual risk assessment in coral reef fishes. Funct Ecol 26:553–558. doi: 10.1111/j.1365-2435.2011.01951.x CrossRefGoogle Scholar
  22. Fisher HS, Wong BB, Rosenthal GG (2006) Alteration of the chemical environment disrupts communication in a freshwater fish. Proc R Soc Lond B Biol Sci 273:1187–1193. doi: 10.1098/rspb.2005.3406 CrossRefGoogle Scholar
  23. Forsgren E, Dupont S, Jutfelt F, Amundsen T (2013) Elevated CO2 affects embryonic development and larval phototaxis in a temperate marine fish. Ecol Evol 3:3637–3646. doi: 10.1002/ece3.709 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Fuiman LA, Magurran AE (1994) Development of predator defences in fishes. Rev Fish Biol Fish 4:145–183. doi: 10.1007/BF00044127 CrossRefGoogle Scholar
  25. Galloway BJ, Kieffer JD (2003) The effects of an acute temperature change on the metabolic recovery from exhaustive exercise in juvenile Atlantic salmon (Salmo salar). Physiol Biochem Zool 76:652–662. doi: 10.1086/376921 CrossRefPubMedGoogle Scholar
  26. Gattuso J, Lee K, Rost B, Schulz K (2010) Approaches and tools to manipulate the carbonate chemistry. In: Riebesell U, Fabry VJ, Hansson L, Gattuso JP (eds) Guide to best practices for ocean acidification research and data reporting. Publications Office of the European Union, Luxembourg, pp 41–52Google Scholar
  27. Gerlach G, Hodgins-Davis A, Avolio C, Schunter C (2008) Kin recognition in zebrafish: a 24-hour window for olfactory imprinting. Proc R Soc Lond B Biol Sci 275:2165–2170. doi: 10.1098/rspb.2008.0647 CrossRefGoogle Scholar
  28. Gonzalez RJ, Dunson WA (1987) Adaptations of sodium balance to low pH in a sunfish (Enneacanthus obesus) from naturally acidic waters. J Comp Physiol B 157:555–566. doi: 10.1007/BF00700975 CrossRefGoogle Scholar
  29. Hamilton TJ, Holcombe A, Tresguerres M (2014) CO2-induced ocean acidification increases anxiety in rockfish via alteration of GABAA receptor functioning. Proc R Soc Lond B Biol Sci 281:20132509. doi: 10.1098/rspb.2013.2509 CrossRefGoogle Scholar
  30. Hara TJ (1993) Role of olfaction in fish behaviour. In: Pitcher TJ (ed) Behaviour of teleost fishes. Chapman & Hall, London, pp 170–199Google Scholar
  31. Hara TJ, Law YMC, MacDonald S (1976) Effects of mercury and copper on the olfactory response in rainbow trout, Salmo gairdneri. J Fish Res Board Can 33:1568–1573. doi: 10.1139/f76-197 CrossRefGoogle Scholar
  32. Hasler CT, Butman D, Jeffrey JD, Suski CD (2016) Freshwater biota and rising pCO2? Ecol Lett 19:98–108. doi: 10.1111/ele.12549 CrossRefPubMedGoogle Scholar
  33. Heuer RM, Grosell M (2014) Physiological impacts of elevated carbon dioxide and ocean acidification on fish. Am J Physiol Regul Integr Comp Physiol 307:R1061–R1084. doi: 10.1152/ajpregu.00064.2014 CrossRefPubMedGoogle Scholar
  34. Hirata T, Kaneko T, Ono T, Nakazato T, Furukawa N, Hasegawa S, Wakabayashi S, Shigekawa M, Chang MH, Romero MF, Hirose S (2003) Mechanism of acid adaptation of a fish living in a pH 3.5 lake. Am J Physiol Regul Integr Comp Physiol 284:1199–1212. doi: 10.1152/ajpregu.00267.2002 CrossRefGoogle Scholar
  35. Johnson MS, Billett MF, Dinsmore KJ, Wallin M, Dyson KE, Jassal RS (2010) Direct and continuous measurement of dissolved carbon dioxide in freshwater aquatic systems—method and applications. Ecohydrology 3:68–78. doi: 10.1002/eco.95 Google Scholar
  36. Jutfelt F, Hedgärde M (2013) Atlantic cod actively avoid CO2 and predator odour, even after long-term CO2 exposure. Front Zool 10:81. doi: 10.1186/1742-9994-10-81 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Jutfelt F, Hedgärde M (2015) Juvenile Atlantic cod behavior appears robust to near-future CO2 levels. Front Zool 12:11. doi: 10.1186/s12983-015-0104-2 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Jutfelt F, de Souza KB, Vuylsteke A, Sturve J (2013) Behavioural disturbances in a temperate fish exposed to sustained high-CO2 levels. PLoS One 8(6):e65825. doi: 10.1371/journal.pone.0065825 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kates D, Dennis C, Noatch MR, Suski CD, MacLatchy D (2012) Responses of native and invasive fishes to carbon dioxide: potential for a nonphysical barrier to fish dispersal. Can J Fish Aquat Sci 69:1748–1759. doi: 10.1139/f2012-102 CrossRefGoogle Scholar
  40. Keene ON (1995) The log transformation is special. Stat Med 14:811–819. doi: 10.1002/sim.4780140810 CrossRefPubMedGoogle Scholar
  41. Klaprat DA, Brown SB, Hara TJ (1988) The effect of low pH and aluminum on the olfactory organ of rainbow trout, Salmo gairdneri. Environ Biol Fish 22:69–77. doi: 10.1007/BF00000544 CrossRefGoogle Scholar
  42. Kolar CS, Chapman DC, Courtenay WR Jr, Housel CM, Williams JD, Jennings DP (2007) Bigheaded carps: a biological synopsis and environmental risk assessment, vol 33. American Fisheries Society Special Publication, Bethesda, MarylandGoogle Scholar
  43. Laird NM, Ware JH (1982) Random-effects models for longitudinal data. Biometrics 38:963–974. doi: 10.2307/2529876 CrossRefPubMedGoogle Scholar
  44. Lawrence B, Smith R (1989) Behavioral response of solitary fathead minnows, Pimephales promelas, to alarm substance. J Chem Ecol 15:209–219. doi: 10.1007/BF02027783 CrossRefPubMedGoogle Scholar
  45. Leduc AO, Kelly JM, Brown GE (2004) Detection of conspecific alarm cues by juvenile salmonids under neutral and weakly acidic conditions: laboratory and field tests. Oecologia 139:318–324. doi: 10.1007/s00442-004-1492-8 CrossRefPubMedGoogle Scholar
  46. Leduc AO, Roh E, Brown GE (2009) Effects of acid rainfall on juvenile Atlantic salmon (Salmo salar) antipredator behaviour: loss of chemical alarm function and potential survival consequences during predation. Mar Freshw Res 60:1223–1230CrossRefGoogle Scholar
  47. Leduc AO, Munday PL, Brown GE, Ferrari MC (2013) Effects of acidification on olfactory-mediated behaviour in freshwater and marine ecosystems: a synthesis. Phil Trans R Soc Lond B Biol Sci 368:20120447. doi: 10.1098/rstb.2012.0447 CrossRefGoogle Scholar
  48. Lemly AD, Smith RJF (1985) Effects of acute exposure to acidified water on the behavioral response of fathead minnows, Pimephales promelas, to chemical feeding stimuli. Aquat Toxicol 6:25–36. doi: 10.1016/0166-445X(85)90017-7 CrossRefGoogle Scholar
  49. Lemly AD, Smith RJF (1987) Effects of chronic exposure to acidified water on chemoreception of feeding stimuli in fathead minnows (Pimephales promelas): mechanisms and ecological implications. Environ Toxicol Chem 6:225–238. doi: 10.1002/etc.5620060307 CrossRefGoogle Scholar
  50. Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation—a review and prospectus. Can J Zool 68:619–640. doi: 10.1139/z90-092 CrossRefGoogle Scholar
  51. Lindstrom MJ, Bates DM (1990) Nonlinear mixed effects models for repeated measures data. Biometrics 46:673–687. doi: 10.2307/2532087 CrossRefPubMedGoogle Scholar
  52. Little EE, Calfee RD, Fabacher DL, Sanders L (2011) Fright reaction and avoidance induced by exposure to conspecific skin extracts in invasive bighead and silver carps. In: Chapman DC, Hoff MH (eds) Invasive Asian Carps in North America, vol 74. Bethesda, Md., American Fisheries Society, Symposium, Maryland, pp 215–226 (91862) Google Scholar
  53. Maberly SC (1996) Diel, episodic and seasonal changes in pH and concentrations of inorganic carbon in a productive lake. Freshw Biol 35:579–598. doi: 10.1111/j.1365-2427.1996.tb01770.x CrossRefGoogle Scholar
  54. Maneja R, Frommel A, Browman H, Clemmesen C, Geffen A, Folkvord A, Piatkowski U, Durif C, Bjelland R, Skiftesvik A (2013) The swimming kinematics of larval Atlantic cod, Gadus morhua L., are resilient to elevated seawater pCO2. Mar Biol 160:1963–1972. doi: 10.1007/s00227-012-2054-y CrossRefGoogle Scholar
  55. Mathis A, Smith RJF (1993) Chemical alarm signals increase the survival time of fathead minnows (Pimephales promelas) during encounters with northern pike (Esox lucius). Behav Ecol 4:260–265. doi: 10.1093/beheco/4.3.260 CrossRefGoogle Scholar
  56. Melzner F, Gutowska MA, Langenbuch M, Dupont S, Lucassen M, Thorndyke MC, Bleich M, Pörtner HO (2009) Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? Biogeosciences 6:2313–2331CrossRefGoogle Scholar
  57. Moore A (1994) An electrophysiological study on the effects of pH on olfaction in mature male Atlantic salmon (Salmo salar) parr. J Fish Biol 45:493–502. doi: 10.1111/j.1095-8649.1994.tb01331.x CrossRefGoogle Scholar
  58. Moran D (2014) The importance of accurate CO2 dosing and measurement in ocean acidification studies. J Exp Biol 217:1827–1828. doi: 10.1242/jeb.105890 CrossRefPubMedGoogle Scholar
  59. Munday PL, Dixson DL, Donelson JM, Jones GP, Pratchett MS, Devitsina GV, Doving KB (2009) Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proc Natl Acad Sci USA 106:1848–1852. doi: 10.1073/pnas.0809996106 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Munday PL, Dixson DL, McCormick MI, Meekan M, Ferrari MC, Chivers DP (2010) Replenishment of fish populations is threatened by ocean acidification. Proc Natl Acad Sci USA 107:12930–12934. doi: 10.1073/pnas.1004519107 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Munday PL, McCormick MI, Meekan M, Dixson DL, Watson S, Chivers DP, Ferrari MC (2012) Selective mortality associated with variation in CO2 tolerance in a marine fish. Ocean Acidif 1:1–5. doi: 10.2478/oac-2012-0001 CrossRefGoogle Scholar
  62. Munday PL, Watson SA, Chung WS, Marshall NJ, Nilsson GE (2014) Response to ‘the importance of accurate CO2 dosing and measurement in ocean acidification studies’. J Exp Biol 217:1828–1829. doi: 10.1242/jeb.105890 CrossRefPubMedGoogle Scholar
  63. Munday PL, Welch MJ, Allan BJM, Watson SA, McMahon S, McCormick MI (2016) Effects of elevated CO2 on predator avoidance behaviour by reef fishes is not altered by experimental test water. bioRxiv. doi: 10.1101/050062 Google Scholar
  64. Nilsson GE, Dixson DL, Domenici P, McCormick MI, Sørensen C, Watson S, Munday PL (2012) Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function. Nat Clim Change 2:201–204. doi: 10.1038/nclimate1352 CrossRefGoogle Scholar
  65. Noatch MR, Suski CD (2012) Non-physical barriers to deter fish movements. Environ Rev 20:71–82. doi: 10.1139/a2012-001 CrossRefGoogle Scholar
  66. Ou M, Hamilton TJ, Eom J, Lyall EM, Gallup J, Jiang A, Lee J, Close DA, Yun S, Brauner CJ (2015) Responses of pink salmon to CO2-induced aquatic acidification. Nat Clim Change 5:950–955. doi: 10.1038/nclimate2694 CrossRefGoogle Scholar
  67. Pfeiffer W, Riegelbauer G, Meier G, Scheibler B (1985) Effect of hypoxanthine-3-N-oxide and hypoxanthine-1-N-oxide on central nervous excitation of the black tetra, Gymnocorymbus ternetzi (Characaidae, Ostariophysi, Pisces) indicated by dorsal light response. J Chem Ecol 11:507–523. doi: 10.1007/BF00989562 CrossRefPubMedGoogle Scholar
  68. Phillips JC, McKinley GA, Bennington V, Bootsma HA, Pilcher DJ, Sterner RW, Urban NR (2015) The potential for CO2-induced acidification in freshwater: a Great Lakes case study. Oceanography 28:136–145CrossRefGoogle Scholar
  69. Poulsen SB, Svendsen JC, Aarestrup K, Malte H (2014) Calcium-dependent behavioural responses to acute copper exposure in Oncorhynchus mykiss. J Fish Biol 84:1326–1339. doi: 10.1111/jfb.12356 CrossRefPubMedGoogle Scholar
  70. Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  71. Regan MD, Turko AJ, Heras J, Andersen MK, Lefevre S, Wang T, Bayley M, Brauner CJ, Huong DTT, Phuong NT, Nilsson GE (2016) Ambient CO2, fish behaviour and altered GABAergic neurotransmission: exploring the mechanism of CO2-altered behaviour by taking a hypercapnia dweller down to low CO2 levels. J Exp Biol 219:109–118. doi: 10.1242/jeb.131375 CrossRefPubMedGoogle Scholar
  72. Riera JL, Schindler JE, Kratz TK (1999) Seasonal dynmaics of carbon dioxide and methan in two clear-water lakes and two bog lakes in northern Wisconsin, USA. Can J Fish Aquat Sci 56:265–274. doi: 10.1139/f98-182 CrossRefGoogle Scholar
  73. Robbins L, Hansen M, Kleypas J, Meylan S (2010) CO2calc—a user-friendly seawater carbon calculator for Windows, Max OS X, and iOS (iPhone). US Geol Surv Open File Rep 1280:2010Google Scholar
  74. Royce-Malmgren CH, Watson WH III (1987) Modification of olfactory-related behavior in juvenile Atlantic salmon by changes in pH. J Chem Ecol 13:533–546. doi: 10.1007/BF01880097 CrossRefPubMedGoogle Scholar
  75. Simpson SD, Munday PL, Wittenrich ML, Manassa R, Dixson DL, Gagliano M, Yan HY (2011) Ocean acidification erodes crucial auditory behaviour in a marine fish. Biol Lett 7:917–920. doi: 10.1098/rsbl.2011.0293 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Smith R (1973) Testosterone eliminates alarm substance in male fathead minnows. Can J Zool 51:875–876. doi: 10.1139/z73-130 CrossRefGoogle Scholar
  77. Sundin J, Jutfelt F (2015) 9–28 d of exposure to elevated pCO2 reduces avoidance of predator odour but had no effect on behavioural lateralization or swimming activity in a temperate wrasse (Ctenolabrus rupestris). ICES J Mar Sci: J Cons fsv101:73. doi: 10.1093/icesjms/fsv101 Google Scholar
  78. Suski CD, Killen SS, Kieffer JD, Tufts BL (2006) The influence of environmental temperature and oxygen concentration on the recovery of largemouth bass from exercise: implications for live—release angling tournaments. J Fish Biol 68:120–136. doi: 10.1111/j.0022-1112.2006.00882.x CrossRefGoogle Scholar
  79. Suski CD, Kieffer JD, Killen SS, Tufts BL (2007) Sub-lethal ammonia toxicity in largemouth bass. Comp Biochem Phys A 146:381–389. doi: 10.1016/j.cbpa.2006.11.005 CrossRefGoogle Scholar
  80. Swann L, Fitzgerald S (1991) The use and application of salt in aquaculture. AS-cooperative extension service, Purdue UniversityGoogle Scholar
  81. Venables W, Ripley B (2002) Modern applied statistics using S. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • John A. Tix
    • 1
  • Caleb T. Hasler
    • 1
  • Cody Sullivan
    • 1
  • Jennifer D. Jeffrey
    • 1
  • Cory D. Suski
    • 1
    Email author
  1. 1.Department of Natural Resources and Environmental SciencesUniversity of Illinois Urbana-ChampaignUrbanaUSA

Personalised recommendations