Aquatic Ecology

, Volume 48, Issue 1, pp 73–83 | Cite as

Differences in dispersal- and colonization-related traits between taxa from the freshwater and the terrestrial realm

Article

Abstract

The aquatic and terrestrial realms differ in many physical properties that not only require specific physiological adaptations but also cause differences in dispersal options. We thus expect that life-history traits related to dispersal and colonization are under selection pressure because freshwater habitats are more isolated and thus more difficult to reach. We compared traits from European databases of three taxonomic groups along the passive–active dispersal gradient: plants (Plantes), snails (Mollusca: Gastropoda: Prosobranchia et Pulmonata) and hoverflies (Diptera: Syrphidae), all of which have both terrestrial and freshwater species (plants and snails) or early life stages (hoverflies). Aquatic taxa seem to be more successful long-distance dispersers than are terrestrial taxa. Our analysis also revealed lower numbers of seeds or eggs produced in the aquatic habitats. However, aquatic taxa often allocate resources to offspring guarding (vegetative propagules in plants, egg capsules in snails) and breeding-site selection (syrphids). Colonization of the aquatic realm is reinforced by increases in life span (plants), clonal spread (plants), shorter generation times (snails), selfing ability (marginal effect in pulmonate snails) or paedogenesis (two incidences in hoverflies, needs further studies). Probably, the variety of strategies reflects the different evolutionary backgrounds that elicit different combinations of trade-offs, but all traits also might increase invasibility of species.

Keywords

Benthic macroinvertebrates Biological invasions Evolution Long-distance dispersal (LDD) Range extension 

Notes

Acknowledgments

This study was financed by the research funding program “LOEWE—Landes-Offensive zur Entwicklung Wissenschaftlich-oekonomischer Exzellenz” of Hesse’s Ministry of Higher Education, Research and the Arts. HK in part received financial support from the Netherlands Organisation for Scientific Research (NWO–ALW 821.01.002) while writing. OT received financial support from the DFG (TA 311/3). We also would like to thank Editor in Chief Piet Spaak (Eawag Dübendorf), Łukasz Głowacki (University Łódź), and an anonymous reviewer, for their highly valued comments on the manuscript.

Supplementary material

10452_2013_9467_MOESM1_ESM.xls (806 kb)
(XLS 806 kb)

References

  1. Abbott KC (2011) A dispersal-induced paradox: synchrony and stability in stochastic metapopulations. Ecol Lett 14:1158–1169PubMedCrossRefGoogle Scholar
  2. Achterkamp B, Ottenheim M, Beukeboom LW, Brakefield PM (2000) Paedogenesis in Eristalis arbustorum (Diptera: Syrphidae). Proc Sect Experim Appl Entomol, Netherl Entomol Soc 11:83–97Google Scholar
  3. Almohamad R, Verheggen F, Francis F, Haubruge E (2007) How does the age of hoverfly females affect their reproduction? Commun Agric Appl Biol Sci 72:503–508PubMedGoogle Scholar
  4. Almohamad R, Verheggen FJ, Haubruge E (2009) Searching and oviposition behavior of aphidophagous hoverflies (Diptera: Syrphidae): a review. Biotech Agron Soc Environ 13:467–481Google Scholar
  5. Altermatt F, Schreiber S, Holyoak M (2011) Interactive effects of disturbance and dispersal directionality on species richness and composition in metacommunities. Ecology 92:859–870PubMedCrossRefGoogle Scholar
  6. Boedeltje G, Bakker JP, Bekker RM, Van Groenendael JM, Soesbergen M (2003) Plant dispersal in a lowland stream in relation to occurrence and three specific life-history traits of the species in the species pool. J Ecol 91:855–866CrossRefGoogle Scholar
  7. Bonn S, Poschlod P, Tackenberg O (2000) Diasporus—a database for diaspore dispersal—concept and applications in case studies for risk assessment. Z Ökol Natursch 9:85–97Google Scholar
  8. Castella E, Speight MCD (1996) Knowledge representation using fuzzy coded variables: an example based on the use of Syrphidae (Insecta, Diptera) in the assessment of riverine wetlands. Ecol Model 85:13–25CrossRefGoogle Scholar
  9. Cook CDK (1996) The aquatic plant book. SPB Academic Publishing, AmsterdamGoogle Scholar
  10. Correa SB, Winemiller KO, Lopez-Fernandez H, Galetti M (2007) Evolutionary perspectives on seed consumption and dispersal by fishes. Bioscience 57:748–756CrossRefGoogle Scholar
  11. Coulton HD, Pennymaker M (1934) The results of twenty years of self-fertilization in the snail Lymnaea columella Say. Am Nat 68:129–136CrossRefGoogle Scholar
  12. Ellenberg H (1992) Zeigerwerte der Gefäßpflanzen (ohne Rubus). In: Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulißen D (eds) Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica vol. 18. Goltze, Göttingen, pp 9–166Google Scholar
  13. Falkner G, Obrdlik P, Castella E, Speight MCD (2001) Shelled Gastropoda of western Europe. Friedrich Held Gesellschaft, MünchenGoogle Scholar
  14. Fox JA, Dybdahl MF, Jokela CM, Lively J (1996) Genetic structure of coexisting sexual and clonal subpopulations in a freshwater snail (Potamopyrgus antipodarum). Evolution 50:1541–1548CrossRefGoogle Scholar
  15. Gardner SN, Mangel M (1999) Modeling investments in seeds, clonal offspring, and translocation in a clonal plant. Ecology 80:1202–1220CrossRefGoogle Scholar
  16. Heger TJ, Mitchell EAD, Todorov M, Golemansky V, Lara E, Leander BS, Pawlowski J (2010) Molecular phylogeny of euglyphid testate amoebae (Cercozoa: Euglyphida) suggests transitions between marine supralittoral and freshwater/terrestrial environments are infrequent. Mol Phylogenet Evol 55:113–122PubMedCrossRefGoogle Scholar
  17. Hemptinne J-L, Dixon AFG, Doucet J-L, Petersen J-E (1993) Optimal foraging by hoverflies (Diptera: Syrphidae) and ladybirds (Coleoptera: Coccinellidae): mechanisms. Eur J Entomol 90:451–455Google Scholar
  18. Henry P-Y, Vimond L, Lenormand T, Jarne P (2006) Is delayed selfing adjusted to chemical cues of density in the freshwater snail Physa acuta? Oikos 112:448–455CrossRefGoogle Scholar
  19. Hintze C, Heydel F, Hoppe C, Cunze S, König A, Tackenberg O (2013) D3: the dispersal and diaspore database—baseline data and statistics on seed dispersal—perspect. Plant Ecol Evol Syst 15:180–192CrossRefGoogle Scholar
  20. Honnay O, Bossuyt B, Verheyen K, Butaye J, Jacquemyn H, Hermy M (2002) Ecological perspectives for the restoration of plant communities in European temperate forests. Biodivers Conserv 11:213–242CrossRefGoogle Scholar
  21. Horvath TG, Lamberti G (1997) Drifting macrophytes as a mechanism for zebra mussel (Dreissena polymorpha) invasion of lake-outlet streams. Am Midl Nat 138:29–36CrossRefGoogle Scholar
  22. Ibrahim IA, Gad AM (1975) The occurrence of paedogenesis in Eristalis larvae (Diptera Syrphidae). J Med Entomol 12:268–268PubMedGoogle Scholar
  23. Kappes H, Haase P (2012) Slow, but steady: dispersal velocity and strategies of freshwater molluscs. Aquat Sci 74:1–14CrossRefGoogle Scholar
  24. Kappes H, Sundermann A, Haase P (2011) Distant land use affects terrestrial and aquatic habitats of high naturalness. Biodivers Conserv 20:2297–2309CrossRefGoogle Scholar
  25. Kearney M (2005) Hybridization, glaciation and geographical parthenogenesis. Trends Ecol Evol 20:495–502PubMedCrossRefGoogle Scholar
  26. Kerney MP, Cameron RAD, Jungbluth JH (1983) Die Landschnecken Nord- und Mitteleuropas. Paul Parey, HamburgGoogle Scholar
  27. Kinlan BP, Gaines SD (2003) Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 84:2007–2020CrossRefGoogle Scholar
  28. Kleyer M, Bekker RM, Knevel IC et al (2008) The LEDA traitbase: a database of life-history traits of the Northwest European flora. J Ecol 96:1266–1274CrossRefGoogle Scholar
  29. Klimeš L, Klimešová J, Hendriks R, van Groenendael J (1997) Clonal plant architecture: a comparative analysis of form and function. In: de Kroon H, van Groenendael J (eds) The ecology and evolution of clonal plants. Backhuys Publishers, Leiden, pp 1–29Google Scholar
  30. Klimešová J, de Bello F (2009) CLO-PLA: the database of clonal and bud bank traits of Central European flora. J Veg Sci 20:511–516CrossRefGoogle Scholar
  31. Klotz S, Kühn I, Durka W (2002) BIOLFLOR – Eine Datenbank mit biologisch-ökologischen Merkmalen zur Flora von Deutschland. Landwirtschaftsverlag, MünsterGoogle Scholar
  32. Kobialka H, Schwer H, Kappes H (2009) Rote Liste der gefährdeten Schnecken und Muscheln (Mollusca: Gastropoda et Bivalvia) in Nordrhein-Westfalen. 3. Fassung 2009. Mitt Deutsch Malakozool Ges 82:3–30Google Scholar
  33. Kurokawa H, Peltzer D, Wardle D (2010) Plant traits, leaf palatability and litter decomposability for co-occurring woody species differing in invasion status and nitrogen fixation ability. Funct Ecol 24:513–523CrossRefGoogle Scholar
  34. Latzel V, Klimesova J, Dolezal J, Pysek P, Tackenberg O, Prach K (2011) The association of dispersal and persistence traits of plants with different stages of succession in Central European man-made habitats. Folia Geobot 46:289–302CrossRefGoogle Scholar
  35. Maltz TK, Sulikowska-Drozd A (2008) Life cycles of clausilids in Poland—knowns and unknowns. Ann Zool 58:857–880CrossRefGoogle Scholar
  36. McCracken GF, Selander RK (1980) Self-fertilization and monogenic strains in natural populations of terrestrial slugs. Proc Nat Acad Sci USA 77:684–688PubMedCrossRefGoogle Scholar
  37. McLachlan JS, Hellmann JJ, Schwartz MW (2007) A framework for debate of assisted migration in an era of climate change. Conserv Biol 21:297–302PubMedCrossRefGoogle Scholar
  38. Moorkens EA, Killeen IJ (2009) Database of association with habitat and environmental variables for non-shelled slugs and bivalves of Britain and Ireland. Irish Wildlife Manuals, No. 41. National Parks and Wildlife Service, Department of the Environment, Heritage and Local Government, Dublin, IrelandGoogle Scholar
  39. Nolte AW (2011) Dispersal in the course of an invasion. Mol Ecol 20:1803–1804PubMedCrossRefGoogle Scholar
  40. Öster M, Ask K, Römermann C, Tackenberg O, Eriksson O (2009) Plant colonization of ex-arable fields from adjacent species-rich grasslands: the importance of dispersal versus recruitment ability. Agric Ecosyst Environ 130:93–99CrossRefGoogle Scholar
  41. Peck LS (2011) Organisms and responses to environmental change. Mar Genomics 4:237–243PubMedCrossRefGoogle Scholar
  42. Pérez-Harguindeguy N, Díaz S, Vendramini F, Cornelissen JHC, Gurvich DE, Cabido M (2003) Leaf traits and herbivore selection in the field and in cafeteria experiments. Austral Ecol 28:642–650CrossRefGoogle Scholar
  43. Phillips BL, Brown GP, Shine R (2010) Life-history evolution in range-shifting populations. Ecology 91:1617–1627PubMedCrossRefGoogle Scholar
  44. Pianka ER (1970) On r- and K-selection. Am Nat 104:592–597CrossRefGoogle Scholar
  45. Pinceel J, Jordaens K, Houtte N, Bernon G, Backeljau T (2005) Population genetics and identity of an introduced terrestrial slug: Arion subfuscus s.l. in the north-east USA (Gastropoda, Pulmonata, Arionidae). Genetica 125:155–171PubMedCrossRefGoogle Scholar
  46. Pollux BJA (2011) The experimental study of seed dispersal by fish (ichthyochory). Freshw Biol 56:197–212CrossRefGoogle Scholar
  47. Poschlod P, Kleyer M, Jackel AK, Dannemann A, Tackenberg O (2003) BIOPOP—a database of plant traits and Internet application for nature conservation. Folia Geobot 38:263–271CrossRefGoogle Scholar
  48. Roll U, Dayan T, Simberloff D, Mienis HK (2009) Non-indigenous land and freshwater gastropods in Israel. Biol Invas 11:1963–1972CrossRefGoogle Scholar
  49. Ruhl JB (2010) Assisted colonization: facilitate migration first. Science 330:1317–1318PubMedCrossRefGoogle Scholar
  50. Santamaría L (2002) Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecol 23:137–154CrossRefGoogle Scholar
  51. Schleicher A, Peppler-Lisbach C, Kleyer M (2011) Functional traits during succession: is plant community assembly trait-driven? Preslia 83:347–370Google Scholar
  52. Selander RK, Kaufman DW (1973) Self-fertilization and genetic population structure in a colonizing land snail. Proc Nat Acad Sci USA 70:1186–1190PubMedCrossRefGoogle Scholar
  53. Sosnová M, van Diggelen R, Klimešová J (2010) Distribution of clonal growth forms in wetlands. Aquat Bot 92:33–39CrossRefGoogle Scholar
  54. Speight MCD, Monteil C, CastellaE, Sarthou J-P (2010) StN 2010. In: Speight MCD, Castella E, Sarthou J-P, Monteil C (ed) Syrph the Net on CD, Issue 7. The database of European Syrphidae. Syrph the Net Publications, DublinGoogle Scholar
  55. Statzner B, Hoppenhaus K, Arens M-F, Richoux P (1997) Reproductive traits, habitat use and templet theory: a synthesis of world-wide data on aquatic insects. Freshw Biol 38:109–135CrossRefGoogle Scholar
  56. Tackenberg O, Poschlod P, Bonn S (2003) Assessment of wind dispersal potential in plant species. Ecol Monogr 73:191–205CrossRefGoogle Scholar
  57. Travis SE, Proffitt CE, Ritland K (2004) Population structure and inbreeding vary with successional stage in created Spartina alterniflora marshes. Ecol Appl 14:1189–1202CrossRefGoogle Scholar
  58. Tsitrone A, Jarne P, David P (2003) Delayed selfing and resource reallocations in relation to mate availability in the freshwater snail Physa acuta. Am Nat 162:474–488PubMedCrossRefGoogle Scholar
  59. Umetsu CA, Antoniazi Evangelista HB, Thomaz SM (2012) The colonization, regeneration, and growth rates of macrophytes from fragments: a comparison between exotic and native submerged aquatic species. Aquat Ecol 46:443–449CrossRefGoogle Scholar
  60. Vermeij GJ (2000) Why are there so few evolutionary transitions between aquatic and terrestrial ecosystems? Biol J Linn Soc 70:541–554CrossRefGoogle Scholar
  61. Watson JR, Hays CG, Raimondi PT, Mitarai S, Dong C, McWilliams JC, Blanchette CA, Caselle JE, Siegel DA (2011) Currents connecting communities: nearshore community similarity and ocean circulation. Ecology 92:1193–1200PubMedCrossRefGoogle Scholar
  62. With KA (2004) Assessing the risk of invasive spread in fragmented landscapes. Risk Anal 24:803–815PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Heike Kappes
    • 1
    • 2
  • Oliver Tackenberg
    • 3
    • 4
  • Peter Haase
    • 4
    • 5
  1. 1.Naturalis Biodiversity CenterLeidenThe Netherlands
  2. 2.Department of Ecology, Cologne BiocenterUniversity of CologneCologneGermany
  3. 3.Institute for Ecology, Evolution and DiversityGoethe-University FrankfurtFrankfurtGermany
  4. 4.Biodiversity and Climate Research Centre (LOEWE BiK-F)FrankfurtGermany
  5. 5.Department of River Ecology and ConservationSenckenberg Gesellschaft für NaturforschungGelnhausenGermany

Personalised recommendations