Aquatic Ecology

, Volume 47, Issue 2, pp 125–135 | Cite as

A lake as a microcosm: reflections on developments in aquatic ecology

  • Lars-Anders Hansson
  • Jakob Brodersen
  • Ben B. Chapman
  • Mattias K. Ekvall
  • Anders Hargeby
  • Kaj Hulthén
  • Alice Nicolle
  • P. Anders Nilsson
  • Christian Skov
  • Christer Brönmark


In the present study, we aim at relating Forbes’ remarkable paper on “The lake as a microcosm”, published 125 years ago, to the present status of knowledge in our own research group. Hence, we relate the observations Forbes made to our own microcosm, Lake Krankesjön in southern Sweden, that has been intensively studied by several research groups for more than three decades. Specifically, we focus on the question: Have we made any significant progress or did Forbes and colleagues blaze the trail through the unknown wilderness and we are mainly paving that intellectual road? We conclude that lakes are more isolated than many other biomes, but have, indeed, many extensions, for example, input from the catchment, fishing and fish migration. We also conclude that irrespective of whether lakes should be viewed as microcosms or not, the paper by Forbes has been exceptionally influential and still is, especially since it touches upon almost all aspects of the lake ecosystem, from individual behaviour to food web interactions and environmental issues. Therefore, there is no doubt that even if 125 years have passed, Forbes’ paper still is a source of inspiration and deserves to be read. Hence, although aquatic ecology has made considerable progress over the latest century, Forbes might be viewed as one of the major pioneers and visionary scientists of limnology.


Forbes Microcosm Trophic cascade Zooplankton Fish Food web 



We thank the Editors Piet Spaak, Thomas Mehner, Bas Ibelings and Liesbeth Bakker for inviting us to write this manuscript. The long-term funding from The Swedish Research Council (vr) and The Swedish Research Council for the Environment and Spatial Planning (Formas) made it possible to provide data for this comparative study.


  1. Arlinghaus R, Mehner T (2004) A management-oriented comparative analysis of urban and rural anglers living in a metropolis (Berlin, Germany). Environ Manag 33:331–344CrossRefGoogle Scholar
  2. Arlinghaus R, Klefoth T, Cooke SJ, Gingerich A, Suski C (2009) Physiological and behavioural consequences of catch-and-release angling on northern pike (Esox lucius L.). Fish Res 97:223–233CrossRefGoogle Scholar
  3. Bengtsson G, Hansson L-A, Montenegro K (2004) Reduced grazing rates in Daphnia pulex caused by contaminants: implications for trophic cascades. Environ Toxicol Chem 23:2641–2648PubMedCrossRefGoogle Scholar
  4. Bergman E, Hansson L-A, Persson A, Strand JA, Romare P, Enell M, Granéli W, Svensson JM, Hamrin S, Cronberg G, Andersson G, Bergstrand E (1999) Synthesis of the theoretical and empirical experiences from nutrient and cyprind reductions in Lake Ringsjön. Hydrobiologia 404:145–156CrossRefGoogle Scholar
  5. Blindow I, Hargeby A, Meyercordt J, Schubert H (2006) Primary production in two shallow lakes with contrasting plant form dominance: a paradox of enrichment? Limnol Oceanogr 51:2711–2721CrossRefGoogle Scholar
  6. Brodersen J, Nicolle A, Nilsson PA, Skov C, Bronmark C, Hansson L-A (2011) Interplay between temperature, fish partial migration and trophic dynamics. Oikos 120:1838–1846CrossRefGoogle Scholar
  7. Brönmark C, Hansson L-A (2000) Chemical communication in aquatic systems: an introduction. Oikos 88:103–111CrossRefGoogle Scholar
  8. Brönmark C, Hansson L-A (2002) Environmental issues in lakes and ponds: current state and future perspective. Environ Conserv 29:290–306CrossRefGoogle Scholar
  9. Brönmark C, Hansson L-A (eds) (2012) Chemical Ecology in Aquatic Systems. Oxford University PressGoogle Scholar
  10. Brönmark C, Miner JG (1992) Predator-induced phenotypical change in crucian carp. Science 258:1348–1350PubMedCrossRefGoogle Scholar
  11. Brönmark C, Skov C, Brodersen J, Nilsson PA, Hansson L-A (2008) Seasonal migration determined by a trade-off between predator avoidance and growth. PLoS One 3:e1957PubMedCrossRefGoogle Scholar
  12. Brönmark C, Brodersen J, Chapman BB, Nicolle A, Nilsson PA, Skov C, Hansson L-A (2010) Regime shifts in shallow lakes: the importance of seasonal fish migration. Hydrobiologia 646:91–100CrossRefGoogle Scholar
  13. Carpenter SR, Kitchell JF (1993) The trophic cascade in lakes. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  14. Carpenter SR, Kitchell JF, Hodgson JR (1985) Cascading trophic interactions and lake productivity: fish predation and herbivory can regulate lake ecosystem. Bioscience 35:634–639CrossRefGoogle Scholar
  15. Cedervall T, Hansson L-A, Lard M, Frohm B, Linse S (2012) Food chain transport of nanoparticles affects behaviour and fat metabolism in fish. PLoS One 7:e32254PubMedCrossRefGoogle Scholar
  16. Chapman BB, Brönmark C, Nilsson JA, Hansson L-A (2011a) The ecology and evolution of partial migration. Oikos 120:1764–1775CrossRefGoogle Scholar
  17. Chapman BB, Hulthen K, Blomqvist DR, Hansson L-A, Nilsson JA, Brodersen J, Nilsson PA, Skov C, Brönmark C (2011b) To boldly go: individual differences in boldness influence migratory tendency. Ecol Lett 14:871–876PubMedCrossRefGoogle Scholar
  18. Darwin C (1859) On the origin of species by means of natural selection. John Murray, LondonGoogle Scholar
  19. Dodson S (1990) Predicting diel vertical migration of zooplankton. Limnol Oceanogr 35:1195–1200CrossRefGoogle Scholar
  20. Forbes S (1926) The lake as a microcosm. Bull Ill Nat Hist Surv 15:537–550Google Scholar
  21. Fryxell JM, Lundberg P (1998) Individual behavior and community dynamics. Chapman & Hall, LondonGoogle Scholar
  22. Giles N, Wright MR, Nord ME (1986) Cannibalism in pike fry, Esox lucius L.: some experiments with fry densities. J Fish Biol 29:107–113CrossRefGoogle Scholar
  23. Graneli W (2012) Brownification of lakes. In: Bengtsson L, Herschy, R. W., Fairbridge, R. (ed) Encyclopedia of Lakes and ReservoirsGoogle Scholar
  24. Grimm MP (1981) Intraspecific predation as a principal factor controlling the biomass of northern pike (Esox lucius L.). Fish Manag 12:77–79Google Scholar
  25. Hairston NG, Smith FE, Slobodkin LB (1960) Community structure, population control, and competition. Am Nat XCIV:421–425CrossRefGoogle Scholar
  26. Hanson PC (2007) A grassroots approach to sensor and science networks. Front Ecol Environ 5:343CrossRefGoogle Scholar
  27. Hansson L-A, Hylander S (2009a) Effects of ultraviolet radiation on pigmentation, photoenzymatic repair, behavior, and community ecology of zooplankton. Photochem Photobiol Sci 8:1266–1275PubMedCrossRefGoogle Scholar
  28. Hansson L-A, Hylander S (2009b) Size-structured risk assessments govern Daphnia migration. Proc R Soc B 276:331–336PubMedCrossRefGoogle Scholar
  29. Hansson L-A, Annadotter H, Bergman E, Hamrin SF, Jeppesen E, Kairesalo T, Luokkanen E, Nilsson P-Å, Søndergaard M, Strand JA (1998) Biomanipulation as an application of food chain theory: constraints, synthesis and recommendations for temperate lakes. Ecosystems 1:558–574CrossRefGoogle Scholar
  30. Hansson L-A, Enell M, Bergman E (1999) Lake Ringsjon: its catchment area, its history and its importance. Hydrobiologia 404:1–7CrossRefGoogle Scholar
  31. Hansson L-A, Brönmark C, Nilsson PA, Åbjornsson K (2005) Conflicting demands on wetland ecosystem services: nutrient retention, biodiversity or both? Freshw Biol 50:705–714CrossRefGoogle Scholar
  32. Hansson L-A, Nicolle A, Brodersen J, Romare P, Skov C, Nilsson PA, Brönmark C (2007) Consequences of fish predation, migration and juvenile ontogeny on zooplankton spring dynamics. Limnol Oceanogr 52:696–706CrossRefGoogle Scholar
  33. Hansson L-A, Nicolle A, Brönmark C, Hargeby A, Lindström A, Andersson G (2010) Waterfowl, macrophytes, and the clear water state of shallow lakes. Hydrobiologia 646:101–109CrossRefGoogle Scholar
  34. Hansson L-A, Nicolle A, Granéli W, Hallgren P, Kritzberg E, Persson A, Nilsson AP, Brönmark C (2013) Food chain length alters community responses to global change in aquatic systems. Nat Clim Change 3:228–233CrossRefGoogle Scholar
  35. Hargeby A, Andersson G, Blindow I, Johanson S (1994) Trophic web structure in a shallow eutrophic lake during a dominance shift from phytoplankton to submerged macrophytes. Hydrobiologia 279(280):83–90CrossRefGoogle Scholar
  36. Hrbácek J, Dvorakova M, Korínek V, Prochákóva L (1961) Demonstration of the effect of the fish stock on the species composition of zooplankton and the intensity of metabolism of the whole plankton association. Verh Int Ver Limnol 14:192–195Google Scholar
  37. Jepsen N, Berg S (2002) The use of winter refuges by roach tagged with miniature radio transmitters. Hydrobiologia 483:167–173CrossRefGoogle Scholar
  38. Källander H, Hansson L-A, Brönmark C, Nicolle A (2009) Waterfowl in Lake Krankesjön. Ornis Svecica 19:65–87Google Scholar
  39. Klefoth T, Kobler A, Arlinghaus R (2008) The impact of catch-and-release on short term behaviour and habitat choice of northern pike (Esox lucius L.). Hydrobiologia 601:99–110CrossRefGoogle Scholar
  40. Kosten S, Huszar VLM, Becares E, Costa LS, van Donk E, Hansson L-A, Jeppesen E, Kruk C, Lacerot G, Mazzeo N, De Meester L, Moss B, Lurling M, Noges T, Romo S, Scheffer M (2012) Warmer climates boost cyanobacterial dominance in shallow lakes. Glob Change Biol 18:118–126CrossRefGoogle Scholar
  41. Laforsch C, Tollrian R (2004) Inducible defences in multipredator environments: cyclomorphosis in Daphnia cucculata. Ecology 85:2302–2311CrossRefGoogle Scholar
  42. Lindeman R (1942) The trophic-dynamic aspect of ecology. Ecology 23:399–418CrossRefGoogle Scholar
  43. Luecke C, O’Brien WJ (1981) Phototoxicity and fish predation: selective factors in color morphs in Heterocope. Limnol Oceanogr 26:454–460CrossRefGoogle Scholar
  44. Marklund O, Sandsten H, Hansson L-A, Blindow I (2002) Effects of waterfowl and fish on submerged vegetation and macroinvertebrates. Freshw Biol 47:2049–2059CrossRefGoogle Scholar
  45. Mehner T, Schultz H, Bauer D, Herbst R, Voigt H, Benndorf J (1996) Intraguild predation and cannibalism in age-0 perch (Perca fluviatilis) and age-0 zander (Stizostedion lucioperca): interactions with zooplankton succession, prey fish availability and temperature. Ann Zool Fennici 33:353–361Google Scholar
  46. Nicolle A, Hansson L-A, Brodersen J, Nilsson PA, Bronmark C (2011) Interactions between predation and resources shape zooplankton population dynamics. PLoS One 6:e16534PubMedCrossRefGoogle Scholar
  47. Nicolle A, Hallgren P, von Einem J, Kritzberg E, Granéli W, Persson A, Brönmark C, Hansson L-A (2012) Predicted warming and browning affect timing and magnitude of plankton phenological events in lakes: a mesocosm study. Freshw Biol 57:684–695CrossRefGoogle Scholar
  48. Nilsson PA (2001) Predator behaviour and prey density: evaluating density-dependent intraspecific interactions on predator functional responses. J Anim Ecol 70:14–19CrossRefGoogle Scholar
  49. Nilsson PA (2006) Avoid your neighbours: size-determined spatial distribution patterns among northern pike individuals. Oikos 113:251–258CrossRefGoogle Scholar
  50. Nilsson PA, Brönmark C (1999) Foraging among cannibals and kleptoparasites: effects of prey size on pike behavior. Behav Ecol 10:557–566CrossRefGoogle Scholar
  51. Nilsson PA, Brönmark C (2000) Prey vulnerability to a gape-size limited predator: behavioural and morphological impacts on northern pike piscivory. Oikos 88:539–546CrossRefGoogle Scholar
  52. Nilsson PA, Nilsson K, Nyström P (2000) Does risk of intraspecific interactions induce shifts in prey-size preference in aquatic predators? Behav Ecol Sociobiol 48:268–275CrossRefGoogle Scholar
  53. Nilsson PA, Turesson H, Brönmark C (2006) Friends and foes in foraging: intraspecific interactions act on foraging-cycle stages. Behaviour 143:733–745CrossRefGoogle Scholar
  54. Nilsson PA, Lundberg P, Brönmark C, Persson A, Turesson H (2007) Behavioral interference and facilitation in the foraging cycle determine the functional response. Behav Ecol 18:354–357CrossRefGoogle Scholar
  55. Paukert CP, Klammer JA, Pierce RB, Simonson TD (2001) An overview of Northern pike regulations in North America. Fisheries 26:6–13CrossRefGoogle Scholar
  56. Persson L (1983) Effects of intra-and interspecific competition on dynamics and size structure of a perch (Perca fluviatilis) and a roach (Rutilus rutilus) population. Oikos 41:126–132CrossRefGoogle Scholar
  57. Persson L, Byström P, Wahlström E, Westman E (2004) Trophic dynamics in a whole lake experiment: size-structured interactions and recruitment variation. Oikos 106:263–274CrossRefGoogle Scholar
  58. Raat AJP (1988) Synopsis of the biological data on the northern pike, Esox lucius Linnaeus, 1758. FAO Fisheries Synopsis: No. 30, Rev. 32, p 178Google Scholar
  59. Romare P, Hansson L-A (2003) A behavioral cascade: top-predator induced behavioral shifts in planktivorous fish and zooplankton. Limnol Oceanogr 48:1956–1964CrossRefGoogle Scholar
  60. Skov C, Nilsson PA (2007) Evaluating stocking of YOY pike Esox lucius L. as a tool in the restoration of shallow lakes. Freshw Biol 52:1834–1845CrossRefGoogle Scholar
  61. Skov C, Brodersen J, Nilsson PA, Hansson L-A, Brönmark C (2008) Inter- and size-specific patterns of fish seasonal migration between a shallow lake and its streams. Ecol Freshw Fish 17:406–415CrossRefGoogle Scholar
  62. Skov C, Aarestrup K, Baktoft H, Brodersen J, Brönmark C, Hansson L-A, Nielsen EE, Nielsen T, Nilsson PA (2010) Influences of environmental cues, migration history, and habitat familiarity on partial migration. Behav Ecol 21:1140–1146CrossRefGoogle Scholar
  63. Skov C, Baktoft H, Brodersen J, Brönmark C, Chapman B, Hansson L-A, Nilsson PA (2011) Sizing up your enemy: individual predation vulnerability predicts migratory probability. Proc R Soc B 278:1414–1418PubMedCrossRefGoogle Scholar
  64. Smith C, Reay P (1991) Cannibalism in teleost fish. Rev Fish Biol Fish 1:41–64CrossRefGoogle Scholar
  65. Sommer U, Gliwicz ZM, Lampert W, Duncan A (1986) The PEG-model of seasonal succession of planktonic events in fresh waters. Arch Hydrobiol 106:433–471Google Scholar
  66. Sommer U, Adrian R, Domis LD, Elser JJ, Gaedke U, Ibelings B, Jeppesen E, Lurling M, Molinero JC, Mooij WM, van Donk E, Winder M (2012) Beyond the Plankton Ecology Group (PEG) model: mechanisms driving plankton succession. Annu Rev Ecol Evol S 43:429–448CrossRefGoogle Scholar
  67. Stålhammar M, Linderfalk R, Brönmark C, Arlinghaus R, Nilsson PA (2012) The impact of catch-and-release on the foraging behaviour of pike (Esox lucius) when released alone or into groups. Fish Res 125–126:51–56CrossRefGoogle Scholar
  68. Stenson JAE, Svensson JE, Cronberg G (1993) Changes and interactions in the pelagic community in acidified lakes in Sweden. Ambio 22:277–282Google Scholar
  69. Storz UC, Paul RJ (1998) Phototaxis in water fleas (Daphnia magna) is differently influenced by visible and UV light. J Comp Physiol A 183:709–717CrossRefGoogle Scholar
  70. Wesenberg-Lund C (1900) Von dem Abhangigkeitsverhiiltnis zwischen dem Bau der Planktonorganismen und dem spezifischen Gewicht des Siisswassers. Bioi Zentralbl 20:606–619Google Scholar
  71. Wesenberg-Lund C (1908) Plankton investigations of Danish Lakes. Danish Freshwater Biology Laboratory, vol 5Google Scholar
  72. Williamson CE, Fischer JM, Bollens SM, Overholt EP, Breckenridge JK (2011) Toward a more comprehensive theory of zooplankton diel vertical migration: integrating ultraviolet radiation and water transparency into the biotic paradigm. Limnol Oceanogr 56:1603–1623CrossRefGoogle Scholar
  73. Winder M, Schindler DE (2004) Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85:2100–2106CrossRefGoogle Scholar
  74. Woltereck R (1913) Uber Funktion, Herkunft und Entstehungsursachen der sogenannten ‘Schwebe-Fortsatze’ pelagischer Cladoceren. Zool Sci 67:474–550Google Scholar
  75. Zaret TM, Suffern JS (1976) Vertical migration in zooplankton as a predator avoidance mechanism. Limnol Oceanogr 21:804–813CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Lars-Anders Hansson
    • 1
  • Jakob Brodersen
    • 1
  • Ben B. Chapman
    • 1
  • Mattias K. Ekvall
    • 1
  • Anders Hargeby
    • 1
  • Kaj Hulthén
    • 1
  • Alice Nicolle
    • 1
  • P. Anders Nilsson
    • 1
  • Christian Skov
    • 1
  • Christer Brönmark
    • 1
  1. 1.Institute of Biology/Aquatic EcologyLund UniversityLundSweden

Personalised recommendations