Aquatic Ecology

, Volume 45, Issue 1, pp 23–33

Size-related dietary changes observed in young-of-the-year pumpkinseed (Lepomis gibbosus): stomach contents and fatty acid analyses

  • Chafik Maazouzi
  • Vincent Médoc
  • Jean-Claude Pihan
  • Gérard Masson


Changes in dietary composition and its effects on the fatty acid (FA) composition of young-of-the-year (YOY) pumpkinseed (Lepomis gibbosus) from an artificial reservoir (Mirgenbach—northeastern France) were related to body size as shown by stomach content and FA analyses. Comparisons were made between three size classes of fishes: 25–35 mm total length (TL), 35–45 mm TL and 45–55 mm TL. Diets of the youngest L. gibbosus (TL ≤ 35 mm) consisted mainly of zooplanktonic microcrustaceans and Chironomidae. Ontogenetic development influenced the FA composition of L. gibbosus. Older YOY L. gibbosus showed an increase in proportions of monounsaturated FA proportions and a decrease in polyunsaturated FA and mainly essential FA (particularly docosahexaenoic acid). The low ω3/ω6 ratio and low PUFA content (mainly on DHA) suggested that L. gibbosus would not transfer the benefits of consuming ω3 PUFA up the food web.


Ontogenetic changes Reservoir Prey species Freshwater fish Food web 


  1. Abd Rahman S, Huah TS, Hassan O, Daud NM (1995) Fatty acid composition of some Malaysian freshwater fish. Food Chem 54:45–49. doi:10.1016/0308-8146(95)92660-C CrossRefGoogle Scholar
  2. Abi-Ayad S-ME-A, Kestemont P, Mélard C (2000) Dynamics of total lipids and fatty acids during embryogenesis and larval development of Eurasian perch (Perca fluviatilis). Fish Physiol Biochem 23:233–243. doi:10.1023/A:1007891922182 CrossRefGoogle Scholar
  3. Abi-Ayad S-ME-A, Boutiba Z, Mélard C, Kestemont P (2004) Dynamics of total body fatty acids during early ontogeny of pikeperch (Sander lucioperca) larvae. Fish Physiol Biochem 30:129–136. doi:10.1007/s10695-005-3417-9 CrossRefGoogle Scholar
  4. Ahlgren G, Blomquist P, Boberg M, Gustafsson IB (1994) Fatty acid content of the dorsal muscle—an indicator of fat quality in freshwater fish. J Fish Biol 45:131–141. doi:10.1111/j.1095-8649.1994.tb01292.x Google Scholar
  5. Almeida D, Almodóvar A, Nicola GG, Elvira B (2009) Feeding tactics and body condition of two introduced populations of pumpkinseed Lepomis gibbosus: taking advantages of human disturbances? Ecol Freshw Fish 18:15–23. doi:10.1111/j.1600-0633.2008.00317.x CrossRefGoogle Scholar
  6. Andrade AD, Rubira AF, Matsushita M, Souza NE (1995) Omega-3-fatty-acids in fresh-water fish from south Brazil. J Am Oil Chem Soc 72:1207–1210. doi:10.1007/BF02540990 CrossRefGoogle Scholar
  7. Bell MV, Batty RS, Dick JR, Fretwell K, Navarro JC, Sargent JR (1995) Dietary deficiency of docosahexaenoic acid impairs vision at low light intensities in juvenile herring (Clupea harengus L.). Lipids 30:443–449. doi:10.1007/BF02536303 PubMedCrossRefGoogle Scholar
  8. Benke AC, Huryn AD, Smock LA, Wallace JB (1999) Length-mass relationship for freshwater macroinvertebrates in North America with particular reference to the southeastern United States. J N Am Benthol Soc 18:308–343CrossRefGoogle Scholar
  9. Berens EJ, Murie DJ (2008) Differential digestion and evacuation rates of prey in a warm-temperate grouper, gag Mycteroperca microlepis (Goode and Bean). J Fish Biol 72:1406–1426. doi:10.1111/j.1095-8649.2008.01806.x CrossRefGoogle Scholar
  10. Christie WW (1982) Lipid analyses, 2nd edn. Pergamon, Oxford, p 207Google Scholar
  11. Christman VD, Voshell JR (1992) Life history, growth, and production of Ephemeroptera in experimental ponds. Ann Entomol Soc Am 85:705–712Google Scholar
  12. Copp GH, Fox MG (2007) Growth and life history traits of introduced pumpkinseed (Lepomis gibbosus) in Europe, and the relevance to its potential invasiveness. In: Gherardi F (ed) Biological invasions in inland waters: profiles, distribution and threats. Springer, Berlin, pp 289–306CrossRefGoogle Scholar
  13. Dalsgaard J, John M, Kattner G, Müller-Navarra D, Hagen W (2003) Fatty acid trophic markers in the pelagic marine environment. Adv Mar Biol 46:225–340PubMedCrossRefGoogle Scholar
  14. Dembski S, Masson G, Monnier D, Wagner P, Pihan JC (2006) Consequences of elevated temperatures on life-history traits of an introduced fish, pumpkinseed Lepomis gibbosus. J Fish Biol 69:331–346. doi:10.1111/j.1095-8649.2006.01087.x CrossRefGoogle Scholar
  15. Dembski S, Masson G, Wagner P, Pihan JC (2008) Habitat use by YOY in the littoral zone of an artificially heated reservoir. Int Rev Hydrobiol 93:243–255. doi:10.1002/iroh.200710911 CrossRefGoogle Scholar
  16. Dumont HJ, Van de Velde I, Dumont S (1975) The dry weight estimate of biomass in a selection of cladocera, copepoda and rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19:75–97. doi:10.1007/BF00377592 CrossRefGoogle Scholar
  17. Einfalt LM, Wahl DH (1997) Prey selection by juvenile walleye as influenced by prey morphology and behaviour. Can J Fish Aquat Sci 54:2618–2626. doi:10.1139/cjfas-54-11-2618 CrossRefGoogle Scholar
  18. Flesch A, Masson G, Moreteau JC (1994) Comparaison de trois méthodes d’échantillonnage utilisées dans l’étude de la répartition de la perche (Perca fluviatilis) dans un lac-réservoir. Cybium 18:39–56Google Scholar
  19. Folch J, Lees N, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipid. J Biol Chem 226:497–509PubMedGoogle Scholar
  20. Garcia-Berthou E, Moreno-Amich R (2000) Food of introduced pumpkinseed sunfish: ontogenetic diet shift and seasonal variation. J Fish Biol 57:29–40. doi:10.1006/jfbi.2000.1285 CrossRefGoogle Scholar
  21. Garvey JE, Herra TP, Leggett WC (2002) Protracted reproduction in sunfish: the temporal dimension in fish recruitment revisited. Ecol Appl 12:194–205. doi:10.1890/1051-0761(2002)012[0194:PRISTT]2.0.CO;2 CrossRefGoogle Scholar
  22. Gill AB (2003) The dynamics of prey choice in fish: the importance of prey size and satiation. J Fish Biol 63(Suppl 1):105–116. doi:10.1111/j.1095-8649.2003.00214.x CrossRefGoogle Scholar
  23. Gillespie GJ, Fox MG (2003) Morphological and life-history differentiation between littoral and pelagic forms of pumpkinseed. J Fish Biol 62:1099–1115. doi:10.1046/j.1095-8649.2003.00100.x CrossRefGoogle Scholar
  24. Godinho FN, Ferreira MT, Cortes RV (1997) The environmental basis of diet variation in pumpkinseed sunfish, Lepomis gibbosus, and largemouth bass, Micropterus salmoides, along an Iberian river basin. Environ Biol Fish 50:105–115. doi:10.1023/A:1007302718072 CrossRefGoogle Scholar
  25. Graeve M, Kattner G, Piepenburg D (1997) Lipids in Arctic benthos: does the fatty acid and alcohol composition reflect feeding and trophic interactions? Polar Biol 18:53–61. doi:10.1007/s003000050158 CrossRefGoogle Scholar
  26. Heermann L, Eriksson L-O, Magnhagen C, Borcherding J (2009) Size-dependent energy storage and winter mortality of perch. Ecol Freshw Fish 18:560. doi:10.1111/j.1600-0633.2009.00371.x CrossRefGoogle Scholar
  27. Henderson RJ, Tocher DR (1987) The lipid composition and biochemistry of freshwater fish. Prog Lipid Res 26:281–347PubMedCrossRefGoogle Scholar
  28. Jorgenson JK, Welch HE, Curtis MF (1992) Response of amphipoda and trichoptera to lake fertilization in the Canadian Arctic. Can J Fish Aquat Sci 49:2354–2362. doi:10.1139/f92-259 CrossRefGoogle Scholar
  29. Katsuki H, Okuda S (1995) Arachidonic acid as a neurotoxic and neurotrophic substance. Prog Neurobiol 46:607–635. doi:10.1016/0301-0082(95)00016-O PubMedCrossRefGoogle Scholar
  30. Keast A (1980) Food and feeding relationships of young fish in the first few weeks after beginning of exogenous feeding in Lake Opinicon, Ontario. Environ Biol Fish 5:305–314. doi:10.1007/BF00005185 CrossRefGoogle Scholar
  31. Kirsch PE, Iverson SJ, Bowen WD, Kerr SR, Ackman RG (1998) Dietary effects on the fatty acid signature of whole Atlantic cod (Gadus morhua). Can J Fish Aquat Sci 55:1378–1386. doi:10.1139/cjfas-55-6-1378 CrossRefGoogle Scholar
  32. Kozlova TA, Khotimchenko SV (2000) Lipids and fatty acids of two pelagic cottoid fishes (Comephorus spp.) endemic to Lake Baikal. Comp Biochem Phys B 126:477–485. doi:10.1016/S0305-0491(00)00207-8 CrossRefGoogle Scholar
  33. Kuusipalo L, Käkelä R (2000) Muscle fatty acids as indicators of niche and habitat in Malawian cichlids. Limnol Oceanogr 45:996–1000CrossRefGoogle Scholar
  34. Leppäkoski E, Olenin S (2001) The meltdown of biogeographical pecularities of the Baltic Sea: the interaction of natural and man-made processes. Ambio 30:202–209PubMedCrossRefGoogle Scholar
  35. Leprieur F, Beauchard O, Hugueny B, Grenouillet G, Brosse S (2008) Null model of biotic homogenization: a test with the European freshwater fish fauna. Divers Distrib 14:291–300. doi:10.1111/j.1472-4642.2007.00409.x CrossRefGoogle Scholar
  36. Lundvall D, Svanback R, Persson L, Bystrom P (1999) Size-dependent predation in piscivores: interactions between predator foraging and prey avoidance abilities. Can J Fish Aquat Sci 56:1285–1292. doi:10.1139/cjfas-56-7-1285 CrossRefGoogle Scholar
  37. Maazouzi C, Masson G, Izquierdo MS, Pihan JC (2007) Fatty acid composition of the amphipod Dikerogammarus villosus: feeding strategies and trophic links. Comp Biochem Phys A 147:868–875. doi:10.1016/j.cbpa.2007.02.010 CrossRefGoogle Scholar
  38. Maazouzi C, Masson G, Izquierdo MS, Pihan JC (2008) Midsummer heat wave effects on lacustrine plankton: variation of assemblage structure and fatty acid composition. J Therm Biol 33:287–296. doi:10.1016/j.jtherbio.2008.03.002 CrossRefGoogle Scholar
  39. Maazouzi C, Piscart C, Pihan JC, Masson G (2009) Effect of habitat-related resources on fatty acid composition and body weight of the invasive Dikerogammarus villosus in an artificial reservoir. Fundam Appl Limnol 175:327–338. doi:10.1127/1863-9135/2009/0175-0327 CrossRefGoogle Scholar
  40. Maes L (1898) Notes sur la pêche fluviale et maritime en Belgique. Brussels: Administration des Eaux et Forêts, Imprimerie ScientifiqueGoogle Scholar
  41. Masuda R, Takeuchi T, Tsukamoto K, Sato H, Shimizu K, Imaizumi K (1999) Incorporation of dietary docosahexaenoic acid into the central nervous system of the yellowtail Seriola quinqueradiata. Brain Behav Evol 53:173–179. doi:10.1159/000006592 PubMedCrossRefGoogle Scholar
  42. Mehner T, Thiel A (1999) A review of predation impact by 0+ fish on zooplankton in fresh and brackish waters of the temperate northern. Environ Biol Fish 56:169–181. doi:10.1023/A:1007532720226 CrossRefGoogle Scholar
  43. Mittelbach GG (1988) Competition among refuging sunfishes and effects of fish density on littoral zone invertebrates. Ecology 69:614–623. doi:10.2307/1941010 CrossRefGoogle Scholar
  44. Nordin LJ, Arts MT, Johannsson OE, Taylor WD (2008) An evaluation of the diet of Mysis relicta using gut contents and fatty acid profiles in lakes with and without the invader Bythotrephes longimanus (Onychopoda, Cercopagidae). Aquat Ecol 42:421–436. doi:10.1007/s10452-007-9098-y CrossRefGoogle Scholar
  45. Orr AJ, Harvey JT (2001) Quantifying errors associated with using fecal samples to determine the diet of the California sea lion (Zalophus californianus). Can J Zool 79:1080–1087CrossRefGoogle Scholar
  46. Osenberg CW, Mittelbach GG, Wainwright PC (1992) Two stage life histories in fish: the interaction between juvenile competition and adult performance. Ecology 73:255–267. doi:10.2307/1938737 CrossRefGoogle Scholar
  47. Pascal M, Lorvelec O, Vigne JD, Keith P, Clergeau P (2003) Evolution holocène de la faune de Vertébrés de France : invasions et disparitions. Rapport au Ministère de l’Ecologie et du Développement Durable (Direction de la Nature et des Paysages). INRA, CNRS, MNHN, ParisGoogle Scholar
  48. Pratt TC, Fox MG (2001) Biotic influences on habitat selection by young-of year walleye (Stizostedion vitreum) in the demersal stage. Can J Fish Aquat Sci 58:1058–1069. doi:10.1139/cjfas-58-6-1058 CrossRefGoogle Scholar
  49. Rezsu E, Specziar A (2006) Ontogenetic diet profiles and size-dependent diet partitioning of ruffe Gymnocephalus cernuus, perch Perca fluviatilis and pumpkinseed Lepomis gibbosus in Lake Balaton. Ecol Freshw Fish 15:339–349. doi:10.1111/j.1600-0633.2006.00172.x CrossRefGoogle Scholar
  50. R Development Core Team (2007) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from:
  51. Ricciardi A (2007) Are modern biological invasions an unprecedented form of global change? Conserv Biol 21:329–336. doi:10.1111/j.1523-1739.2006.00615.x PubMedCrossRefGoogle Scholar
  52. Saito H, Yamashiro R, Alasalvar C, Konno T (1999) Influence of diet on fatty acids of three subtropical fish, subfamily Caesioninae (Caesio diagramma and C. tile) and family Siganidae (Siganus canaliculatus). Lipids 34:1073–1082. doi:10.1007/s11745-999-0459-4 PubMedCrossRefGoogle Scholar
  53. Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774. doi:10.1126/science.287.5459.1770 PubMedCrossRefGoogle Scholar
  54. Sargent JR (1976) The structure, metabolism and function of lipids in marine organisms. In: Malins DC, Sargent JR (eds) Biochemical and biophysical perspectives in marine biology, vol 3. Academic Press, London, pp 149–212Google Scholar
  55. Sargent J, McEvoy L, Éstevez A, Bell G, Bell M, Henderson J, Tocher D (1999) Lipid nutrition of marine fish during early development: current status and future directions. Aquaculture 179:217–229CrossRefGoogle Scholar
  56. Smith WL, Murphy RC (2002) The eicosanoids: cyclooxygenase, lipoxygenase, and epoxygenase pathways. In: Vance DE, Vance JE (eds) Biochemistry of lipids, lipoproteins and membranes. Elsevier, Amsterdam, pp 341–371CrossRefGoogle Scholar
  57. Smock LA (1980) Relationships between body size and biomass of aquatic insects. Freshw Biol 10:375–383. doi:10.1111/j.1365-2427.1980.tb01211.x CrossRefGoogle Scholar
  58. Van der Meeren T, Klungsoyr J, Wilbelmsen S, Kvensenth PO (1991) Fatty acid composition of unfed and growing cod larvae, Gadus morhua L., feeding on natural plankton in large enclosures. J World Aquac Soc 24:167–185. doi:10.1111/j.1749-7345.1993.tb00006.x CrossRefGoogle Scholar
  59. Wahl CM, Mills EL, McFarland WN, De Grisi JS (1993) Ontogenetic changes in prey selection and visual acuity of the yellow perch, Perca flavescens. Can J Fish Aquat Sci 50:743–749. doi:10.1139/f93-085 CrossRefGoogle Scholar
  60. Walton WE, Hairston NG, Wetterer JK (1992) Growth-related constraints on diet selection by sunfish. Ecology 73:429–437. doi:10.2307/1940750 CrossRefGoogle Scholar
  61. Walton WE, Emiley JJ Jr, Hairston NG (1997) Effect of prey size on the estimation of behavioral visual resolution of bluegill (Lepomis macrochirus). Can J Fish Aquat Sci 54:2502–2508. doi:10.1139/cjfas-54-11-2502 CrossRefGoogle Scholar
  62. Werner EE, Gilliam JF (1984) The ontogenetic niche and species interactions in size—structured populations. Ann Rev Ecol Syst 15:393–425. doi:10.1146/ CrossRefGoogle Scholar
  63. Wolfram-Wais A, Wolfram G, Auer B, Mikschi E, Hain A (1999) Feeding habits of two introduced fish species (Lepomis gibbosus, Pseudorasbora parva) in Neusiedler See (Austria), with special reference to chironomid larva (Diptera: Chironomidae). Hydrobiologia 408/409:123–129. doi:10.1023/A:1017014130103 CrossRefGoogle Scholar
  64. Wootton RJ (1998) Ecology of teleost fishes, 2nd edn. Kluwer, DordrechtGoogle Scholar
  65. Zenebe T, Ahlgren G, Boberg M (1998a) Fatty acid content of some freshwater fish of commercial importance from tropical lakes in the Ethiopian Rift Valley. J Fish Biol 53:987–1005. doi:10.1111/j.1095-8649.1998.tb00458.x CrossRefGoogle Scholar
  66. Zenebe T, Ahlgren G, Gustaffson I-B, Boberg M (1998b) Fatty acid and lipid content of Oreochromis niloticus L. in Ethiopian lakes—dietary effects of phytoplankton. Ecol Freshw Fish 7:146–158. doi:10.1111/j.1600-0633.1998.tb00181.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Chafik Maazouzi
    • 1
    • 2
  • Vincent Médoc
    • 1
    • 3
  • Jean-Claude Pihan
    • 1
  • Gérard Masson
    • 1
  1. 1.UMR CNRS 7146 Laboratoire Interactions Ecotoxicologie Biodiversité EcosystèmesUniversité Paul Verlaine MetzMetzFrance
  2. 2.UMR CNRS 5023 Laboratoire Ecologie des Hydrosystèmes FluviauxUniversité Claude Bernard Lyon 1VilleurbanneFrance
  3. 3.UMR CNRS 5561 BiogéosciencesUniversité de BourgogneDijonFrance

Personalised recommendations