Advertisement

Aquatic Ecology

, Volume 44, Issue 4, pp 781–795 | Cite as

Diets of crustacean zooplankton, inferred from stable carbon and nitrogen isotope analyses, in lakes with varying allochthonous dissolved organic carbon content

  • Paula Kankaala
  • Sami Taipale
  • Lu Li
  • Roger I. Jones
Article

Abstract

We used stable carbon and nitrogen isotope analyses to estimate the relative proportions of three putative food sources (1) algae, (2) allochthonous organic matter (but including also heterotrophic bacteria and green-sulphur bacteria having similar isotopic values) and (3) methane-oxidizing bacteria (MOB) in the diets of crustacean zooplankton in five small boreal lakes representing a gradient of dissolved organic carbon (DOC) concentration from ca. 5 to 40 mg C l−1. The lakes were sampled in May, after establishment of stratification, and again in October during autumnal mixing of the water column. IsoSource mixing model outputs indicated that the proportion of algae in the diets of zooplankton was generally higher in May than in October, and that bacteria contributed to the diets of both cladocerans and copepods. Our results indicate that bacteria, especially MOB, can make an appreciable contribution to zooplankton diets in these small lakes, even in those with relatively low DOC concentrations.

Keywords

Boreal lakes Zooplankton Stable isotope analyses Algal food Bacterial food Allochthonous organic matter IsoSource model 

References

  1. Bade DL, Pace ML, Cole JJ, Carpenter SR (2006) Can algal photosynthetic inorganic carbon isotope fractionation be predicted in lakes using existing models? Aquat Sci 68:142–153CrossRefGoogle Scholar
  2. Bastviken D, Ejlertsson J, Sundh I, Tranvik L (2003) Methane as a source of carbon and energy for lake pelagic food webs. Ecology 84:969–981CrossRefGoogle Scholar
  3. Bergström I, Heinänen A, Salonen K (1986) Comparison of acridine orange, acriflavine, and bisbenzimide stains for enumeration of bacteria in clear and humic waters. Appl Env Microbiol 51:664–667Google Scholar
  4. Bird DF, Kalff J (1987) Algal phagotrophy: regulating factors and importance relative to photosynthesis in Dinobryon (Chrysophyceae). Limnol Oceanogr 32:277–284CrossRefGoogle Scholar
  5. Børsheim KY, Andersen S (1987) Grazing and food size selection by crustacean zooplankton compared to production of bacteria and phytoplankton in a shallow Norwegian mountain lake. J Plankton Res 9:367–379CrossRefGoogle Scholar
  6. Boschker HTS, Middelburg JJ (2002) Stable isotopes and biomarkers in microbial ecology. FEMS Microbiol Ecol 40:85–95CrossRefPubMedGoogle Scholar
  7. Bowman JP, Skerratt JH, Nichols PD, Sly LI (1991) Phospholipid fatty acid and lipopolysaccharide fatty acid signature lipids in methane-utilizing bacteria. FEMS Microbiol Lett 85:15–21CrossRefGoogle Scholar
  8. Brendelberger H (1991) Filter mesh size of cladocerans predicts retention efficiency for bacteria. Limnol Oceanogr 36:884–894CrossRefGoogle Scholar
  9. Camacho A, Erez J, Chicote A, Florín M, Squires MM, Lehman C, Bachofen R (2001) Microbial microstratification, inorganic carbon photoassimilation and dark carbon fixation at the chemocline of the meromictic Lake Cadagno (Switzerland) and its relevance to the food web. Aquat Sci 63:91–106CrossRefGoogle Scholar
  10. Carpenter SR, Jonathan JC, Pace ML, Van de Bogert M, Bade DL, Bastviken D, Gille MC, Hodgson JR, Kitchell JF, Kritzberg ES (2005) Ecosystems subsidies: terrestrial support of aquatic food webs from 13C addition to contrasting lakes. Ecology 86:2737–2750CrossRefGoogle Scholar
  11. Cole JJ, Carpenter SR, Pace ML, Van de Bogert MC, Kitchell JL, Hodgson JR (2006) Differential support of lake food webs by three types of terrestrial organic carbon. Ecol Lett 9:558–568CrossRefPubMedGoogle Scholar
  12. Del Giorgio PA, France RL (1996) Ecosystem-specific patterns in the relationship between zooplankton and POM or microplankton δ13C. Limnol Oceanogr 41:359–365CrossRefGoogle Scholar
  13. Geller W, Müller H (1981) The filtration apparatus of Cladocera: filter mesh-sizes and their implications on food selectivity. Oecologia 49:316–321CrossRefGoogle Scholar
  14. Grey J, Jones RI, Sleep D (2000) Stable isotope analysis of the origins of zooplankton carbon in lakes of differing trophic state. Oecologia 123:232–240CrossRefGoogle Scholar
  15. Gu B, Schelske CL, Hodell DA (2004) Extreme 13C enrichments in a shallow hypereutrophic lake: implications for carbon cycling. Limnol Oceanogr 49:1152–1159CrossRefGoogle Scholar
  16. Hadas O, Pinkas R, Erez J (2001) High chemoautotrophic primary production in Lake Kinneret, Israel: a neglected link in the carbon cycle of the lake. Limnol Oceanogr 46:1968–1976CrossRefGoogle Scholar
  17. Hayes JM (2001) Fractionation of carbon and hydrogen isotopes in biosynthetic processes. In: Valley JW, Cole DR (eds) Stable isotope geochemistry, vol 43. The Mineralogical Society of America, Washington DC, USA, pp 225–277Google Scholar
  18. Hessen DO (1985) Filtering structures and particle selection in coexisting Cladocera. Oecologia 66:368–372CrossRefGoogle Scholar
  19. Hessen DO, Nordby Ø (1988) Limb morphology and the process of particle capture in the cladoceran Holopedium gibberum Zaddach. Verh Int Verein Limnol 23:2038–2044Google Scholar
  20. Jansson M, Bergström AK, Blomqvist P, Drakare S (2000) Allochthonous organic carbon and phytoplankton/bacterioplankton production relationships in lakes. Ecology 81:3250–3255CrossRefGoogle Scholar
  21. Jansson M, Persson L, De Roos AM, Jones RI, Tranvik L (2007) Terrestrial carbon and intraspecific size-structure shape lake ecosystems. Trends in Ecol Evol 22:316–322CrossRefGoogle Scholar
  22. Jones RI (1992) The influence of humic substances on lacustrine planktonic food chains. Hydrobiologia 229:73–91Google Scholar
  23. Jones RI, Grey J, Sleep D, Arvola L (1999) Stable isotope analysis of zooplankton carbon nutrition in humic lakes. Oikos 86:97–104CrossRefGoogle Scholar
  24. Jones RI, Carter CE, Kelly A, Ward S, Kelly DJ, Grey J (2008) Widespread contribution of methane-cycle bacteria to the diets of lake profundal chironomid larvae. Ecology 89:857–864CrossRefPubMedGoogle Scholar
  25. Kankaala P (1988) The relative importance of algae and bacteria as food for Daphnia longispina (Cladocera) in a polyhumic lake. Freshwater Biol 19:285–296CrossRefGoogle Scholar
  26. Kankaala P, Huotari J, Peltomaa E, Saloranta T, Ojala A (2006a) Methanotrophic activity in relation to methane efflux and total heterotrophic bacterial production in a stratified, humic, boreal lake. Limnol Oceanogr 51:1195–1204CrossRefGoogle Scholar
  27. Kankaala P, Taipale S, Grey J, Sonninen E, Arvola L, Jones RI (2006b) Experimental δ13C evidence for a contribution of methane to pelagic food webs in lakes. Limnol Oceanogr 51:2821–2827CrossRefGoogle Scholar
  28. Kankaala P, Taipale S, Nykänen H, Jones RI (2007) Oxidation, efflux and isotopic fractionation of methane during autumnal turnover in a polyhumic, boreal lake. J Geophys Res Biogeosci 112:G02003. doi: 10.1029/2006JG000336 CrossRefGoogle Scholar
  29. Karlsson J, Lymer D, Vrede K, Jansson M (2007) Differences in efficiency of carbon transfer from dissolved organic carbon to two zooplankton groups: an enclosure experiment in an oligotrophic lake. Aquat Sci 69:108–114CrossRefGoogle Scholar
  30. Kortelainen P, Huttunen JT, Väisänen T, Mattsson T, Karjalainen P, Martikainen P (2000) CH4, CO2 and N2O supersaturation in 12 Finnish lakes before and after ice melt. Verh Internat Verein Limnol 27:1410–1414Google Scholar
  31. Kuuppo-Leinikki P, Salonen K (1992) Bacterioplankton in a small polyhumic lake with an anoxic hypolimnion. Hydrobiologia 229:159–168Google Scholar
  32. Lennon JT, Faiia AM, Feng XH, Cottingham KL (2006) Relative importance of CO2 recycling and CH4 pathways in lake food webs along a dissolved organic carbon gradient. Limnol Oceanogr 51:1602–1613CrossRefGoogle Scholar
  33. Marty J, Planas D (2008) Comparison of methods to determine algal δ13C in freshwater. Limnol Oceanogr Methods 6:51–63Google Scholar
  34. Matthews B, Mazumder A (2008) Detecting trophic-level variation in consumer assemblages. Freshwater Biol 53:1942–1953CrossRefGoogle Scholar
  35. Mohamed NM, Taylor WD (2009) Relative contribution of autochthonous and allochthonous carbon to limnetic zooplankton: a new cross-system approach. Fundam Appl Limnol 175:113–124CrossRefGoogle Scholar
  36. Nagata T, Okamoto K (1988) Filtering rates on natural bacteria by Daphnia longispina and Eodiaptumus japonicus in Lake Biwa. J Plankton Res 10:835–850CrossRefGoogle Scholar
  37. Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Ann Rev Ecol Syst 18:293–320CrossRefGoogle Scholar
  38. Philllips DI, Gregg JW (2003) Source partitioning using stable isotopes: coping with too many sources. Oecologia 136:261–269CrossRefGoogle Scholar
  39. Popp BN, Laws EA, Bidigare RR, Dore JE, Hanson KL, Wakeham SG (1998) Effect of phytoplankton cell geometry on carbon isotopic fractionation. Geochim Cosmochim Acta 62:69–77CrossRefGoogle Scholar
  40. Ravinet M, Syväranta J, Jones RI, Grey J (2009) A trophic pathway from biogenic methane supports fish biomass in a temperate lake. Oikos. doi: 10.1111/j.1600-0706.2009.17859
  41. Reynolds CS (2006) Ecology of phytoplankton. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  42. Riera JL, Schindler JE, Kratz TK (1999) Seasonal dynamics of carbon dioxide and methane in two clear-water and two bog lakes in northern Wisconsin, U.S.A. Can J Fish Aquat Sci 56:265–274CrossRefGoogle Scholar
  43. Rothhaupt KO (1996) Utilization of substitutable carbon and phosphorus sources by the mixotrophic crysophyte Ochromonas sp. Ecology 77:706–715CrossRefGoogle Scholar
  44. Rounick JS, Winterbourn MJ (1986) Stable carbon isotopes and carbon flow in ecosystems, measuring 13C to 12C ratios can help trace carbon pathways. Bioscience 36:171–177CrossRefGoogle Scholar
  45. Rudd JWM, Taylor CD (1980) Methane cycling in aquatic environments. Adv Aquat Microb 2:77–150Google Scholar
  46. Salonen K (1979) A versatile method for the rapid and accurate determination of carbon by high temperature combustion. Limnol Oceanogr 24:117–183CrossRefGoogle Scholar
  47. Salonen K, Hammar T (1986) On the importance of dissolved organic matter in the nutrition of zooplankton in some lake waters. Oecologia 68:246–253CrossRefGoogle Scholar
  48. Salonen K, Lehtovaara A (1992) Migrations of haemoglobin-rich Daphnia longispina in a small, steeply stratified, humic lake with an anoxic hypolimnion. Hydrobiologia 229:271–288Google Scholar
  49. Salonen K, Kononen K, Arvola L (1983) Respiration of plankton in two small, polyhumic lakes. Hydrobiologia 101:65–70CrossRefGoogle Scholar
  50. Salonen K, Kankaala P, Tulonen T, Hammar T, James M, Metsälä T-R, Arvola L (1992) Planktonic food chains of a highly humic lakes. II. A mesocosm experiment in summer during dominance of heterotrophic processes. Hydrobiologia 229:143–157Google Scholar
  51. Salonen K, Hammar T, Kuuppo P, Smolander U, Ojala A (2005) Robust parameters confirm predominance of heterotrophic processes in the plankton of a highly humic pond. Hydrobiologia 543:181–189CrossRefGoogle Scholar
  52. Taipale SJ, Sonninen E (2009) The influence of preservation method and time on the δ13C value of dissolved inorganic carbon in water samples. Rapid Commun Mass Spectrom 23:2507–2510CrossRefPubMedGoogle Scholar
  53. Taipale S, Kankaala P, Jones RI (2007) Contributions of different organic carbon sources to Daphnia in the pelagic food web of a small polyhumic lake: results from mesocosm DI13C-additions. Ecosystems 10:757–772CrossRefGoogle Scholar
  54. Taipale S, Kankaala P, Tiirola M, Jones RI (2008) Whole-lake dissolved inorganic 13C additions reveal seasonal shifts in zooplankton diet. Ecology 89:463–474CrossRefPubMedGoogle Scholar
  55. Taipale S, Kankaala P, Hämäläinen H, Jones RI (2009) Seasonal shiflts in the diet of lake zooplankton revealed by phospholipid fatty acid analysis. Freshwater Biol 54:90–104CrossRefGoogle Scholar
  56. Takahashi M, Ichimura S (1970) Photosynthetic properties and growth of photosynthetic sulfur bacteria in lakes. Limnol Oceanogr 15:929–944CrossRefGoogle Scholar
  57. Tulonen T (1993) Bacterial production in a mesohumic lake estimated from [14C]leucine incorporation rate. Microb Ecol 26:201–217CrossRefGoogle Scholar
  58. Van Dongen BE, Schouten S, Damste JSS (2002) Carbon isotope variability in mono saccharides and lipids of aquatic algae and terrestrial plants. Mar Ecol Prog Ser 232:83–92CrossRefGoogle Scholar
  59. Van Gemerden H, Mas J (1995) Ecology of phototrophic sulfur bacteria. In: Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, The Netherlands, pp 49–85Google Scholar
  60. Vander Zanden MJ, Rasmussen JB (1999) Primary consumer δ13C and δ15N and the trophic position of aquatic consumers. Ecology 80:1395–1404CrossRefGoogle Scholar
  61. von Wachenfeldt ES, Bastviken D, Tranvik LJ (2009) Microbially induced flocculation of allochthonous dissolved organic carbon in lakes. Limnol Oceanogr 54:1811–1818Google Scholar
  62. Vuorio K, Meili M, Sarvala J (2006) Taxon-specific variation in the stable isotopic signatures (δ13C and δ15N) of lake phytoplankton. Freshwater Biol 51:807–822CrossRefGoogle Scholar
  63. Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geol 161:291–314CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Paula Kankaala
    • 1
    • 2
  • Sami Taipale
    • 3
  • Lu Li
    • 3
  • Roger I. Jones
    • 3
  1. 1.Lammi Biological Station, University of HelsinkiLammiFinland
  2. 2.Ecological Research Institute, University of Eastern FinlandJoensuuFinland
  3. 3.Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland

Personalised recommendations