Aquatic Ecology

, Volume 43, Issue 3, pp 673–679 | Cite as

Effect of snow depth on under-ice irradiance and growth of Aulacoseira baicalensis in Lake Baikal

  • David H. JewsonEmail author
  • Nick G. Granin
  • Andre A. Zhdanov
  • Ruslan Yu Gnatovsky


Lake Baikal freezes for 4–5 months each year; yet the planktonic diatoms that grow under the ice include some of the largest species found in freshwater. An important factor influencing their growth is the depth of snow. In this study, a population of Aulacoseira baicalensis developed where there was little or no snow on the ice but declined where there was 10 cm of snow, because 99% of the available light was attenuated. Culture studies of light response showed that A. baicalensis was adapted to relatively low light intensities (<40 μmol m−2 s−1) that were close to the average that a cell experiences in L. Baikal when mixed vertically by convection to depths that can exceed 100 m. On sunny days, cell division could be inhibited down to >10 m depth but narrow (<15 μm) diameter cells trapped in high light intensities in sub-ice layers switched to auxosporulation and size regeneration.


Diatom growth Ice Lake Baikal Mixing Phytoplankton Snow 



We thank the members of the Limnology Institute of the Russian Academy of Sciences, M. A. Grachev, Ye. Likhoshway, N. Bondarenko, N. Guselnikova, L. A. Gorbunova, M. N. Shimaraev, V. Tsekhanovsky, L. Olbolkina, V. A. Olbolkin, O. Molozhavaya, A. Kuzmina, N. Melnik, L. Granina and L. Doroschenko. We are also grateful for the help of C. E. Gibson, I. Heaney, M. Sturm, A. Mackay, R. Flower and R. W. Battarbee. We also thank the Royal Society and Russian Academy of Sciences Siberian Division, who have supported parts of this work. We thank K. Salonen and reviewers for helpful comments on the manuscript.


  1. Bidoshvili YeD, Bondarenko NA, Sakirko MV, Khanayev IV, Likhoshway YeV (2007) The change in the length of colonies of the planktonic diatom Aulacoseira baicalensis in various stages of the annual cycle in Lake Baikal. Hydrobiol J 43:79–86CrossRefGoogle Scholar
  2. Bondarenko NA, Timoshkin OA, Ropstorf P, Melnik NG (2006) The under-ice and bottom periods in the life cycle of Aulacoseira baicalensis (K. Meter) Simonsen, a principal Lake Baikal alga. Hydrobiol J 568:107–109CrossRefGoogle Scholar
  3. Cronberg G, Gelin C, Larsson K (1975) Lake Trummmen restoration project. II. Bacteria, phytoplankton and phytoplankton productivity. Verh Int Ver Limnol 19:1088–1096Google Scholar
  4. Fietz S, Kobanova G, Izmest’eva L, Nicklisch A (2005) Regional, vertical and seasonal distribution of phytoplankton and photosynthetic pigments in Lake Baikal. J Plankton Res 27:793–810CrossRefGoogle Scholar
  5. Grachev MA, Vorobyova SS, Likhoshway YV, Goldberg EL, Ziborova GA, Levina OL, Khlystov OL (1998) A high-resolution diatom record of the palaeoclimates of East Siberia for the last 2.5 My from Lake Baikal. Quart Sc Rev 17:1101–1106CrossRefGoogle Scholar
  6. Granin NG, Jewson D, RYu Gnatovsky, Levin LA, Zhdanov AA, Averin AI, Gorbunova LA, Tsekhanovskii VV, Doroschenko LF, NYu Mogilev (1999) Turbulent mixing in the water layer just below the ice and its role in development of diatomic algae in Lake Baikal. Dokl Akad Nauk 366:835–839Google Scholar
  7. Granin NG, Jewson D, RYu Gnatovsky, Levin LA, Zhdanov AA, Averin AI, Gorbunova LA, Tsekhanovskii VV, Doroschenko LF, Minko NP, Grachev MA (2000) Turbulent mixing under ice and the growth of diatoms in Lake Baikal. Verh Int Ver Limnol 27:2812–2814Google Scholar
  8. Gutt J (1995) The occurrence of sub-ice algal aggregations off northeast Greenland. Polar Biol 15:247–252CrossRefGoogle Scholar
  9. Jewson D (1975) The relation of incident radiation to diurnal rates of photosynthesis in Lough Neagh. Int Rev ges Hydrobiol 60:759–767CrossRefGoogle Scholar
  10. Jewson DH, Wood RB (1975) Some effects on integral photosynthesis of artificial circulation of phytoplankton through light gradients. Verh Int Ver Limnol 19:1037–1044Google Scholar
  11. Jewson DH, Granin NG, Zhdarnov AA, Gorbunova LA, Bondarenko NA, Gnatovsky RYu (2008) Resting stages and ecology of the planktonic diatom Aulacoseira skvortzowii in Lake Baikal. Limnol Oceanogr 53:1125–1136Google Scholar
  12. Jónasson P, Adalsteinsson H (1979) Phytoplankton production in the shallow eutrophic Lake Mývatn, Iceland. Oikos 32:113–138CrossRefGoogle Scholar
  13. Kelley DE (1997) Convection in ice covered lakes: effects of algal suspension. J Plankton Res 19:1859–1880CrossRefGoogle Scholar
  14. Kozhov M (1963) Lake Baikal and its life. Junk, The HagueGoogle Scholar
  15. Kozhova OM (1987) Phytoplankton of Lake Baikal: structural and functional characteristics. Arch Hydrobiol Beih Ergebn Limnol 25:19–37Google Scholar
  16. Kozhova OM, Izmest’eva LR (1998) Lake Baikal, Evolution and Biodiversity. Backhuys, Leiden, pp 1–23Google Scholar
  17. Likoshway YV (1999) Fossil endemic centric diatoms from Lake Baikal, Upper Pliestocene complexes. In: Mayama S, Idei M, Koizumi I (eds) 14th Diatom Symposium 1996. Koeltz, Koenigstein, pp 613–628Google Scholar
  18. Lund JWG (1966) Znachenie turbulentnosti vody v priodichnosti razvitiya nekotorykh presnovodnyh vidov roda Melosira (Algae). Bot Zh Kyyiv 51:176–187Google Scholar
  19. Mackay AW, Ryves DB, Battarbee RW, Flower RJ, Jewson DH, Rioual PMJ, Sturm M (2005) 1000 years of climate variability in Central Asia: assessing the evidence using Lake Baikal diatom assemblages and the application of a diatom-inferred model of snow thickness. Glob Planet Change 46:281–297CrossRefGoogle Scholar
  20. Nauwerck A (1963) Die Beziehungen zwischen zooplankton und phytoplankton in See Erken. Symb Bot Ups 17:1–163Google Scholar
  21. Popovskaya GI (2000) Ecological monitoring of phytoplankton in Lake Baikal. Aquat Ecosyst Health Manag 3:215–225CrossRefGoogle Scholar
  22. Richardson TL, Gibson CE, Heaney SI (2000) Temperature, growth and seasonal succession of phytoplankton in Lake Baikal, Siberia. Freshw Biol 44:431–440CrossRefGoogle Scholar
  23. Rodhe W (1955) Can plankton production proceed during winter darkness in sub-arctic lakes? Verh Int Ver Limnol 12:117–122Google Scholar
  24. Sherstyankin PP (1975) Experimental studies of the underwater light field in Lake Baikal. Nauka, Moscow, pp 1–91 in RussianGoogle Scholar
  25. Shimaraev MN, Verbolov VI, Granin NG, Sherstyankin PP (1994) Physical Limnology of Lake Baikal: a Review. Print No. 2. Baikal International Center for Ecological Research, IrkutskGoogle Scholar
  26. Skabichevsky AP (1929) On the biology of Melosira baicalensis (K. Meyer). Russ Hydrobiol J 8:93–114 in RussianGoogle Scholar
  27. Straškrabová V, Izmest’yeva LR, Maksimova EA, Fietz S, Nedoma J, Boroveca J, Kobanova GI, Shchetinina EV, Pisleginac EV (2005) Primary production and microbial activity in the euphotic zone of Lake Baikal (Southern Basin) during late winter. Glob Planet Change 46:57–73CrossRefGoogle Scholar
  28. Zhdanov AA, Granin NG, Shimaraev MN (2001) The generation mechanisms of under-ice currents in Lake Baikal. Dokl Earth Sci A 377:329–332Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • David H. Jewson
    • 1
    Email author
  • Nick G. Granin
    • 2
  • Andre A. Zhdanov
    • 2
  • Ruslan Yu Gnatovsky
    • 2
  1. 1.Freshwater LaboratoryUniversity of UlsterMagherafelt, County LondonderryUK
  2. 2.Limnological InstituteRussian Academy of Sciences Siberian DivisionIrkutskRussia

Personalised recommendations