Aquatic Ecology

, Volume 43, Issue 4, pp 1047–1059 | Cite as

Influence of substrate preference and complexity on co-existence of two non-native gammarideans (Crustacea: Amphipoda)

  • Axel Kley
  • Werner Kinzler
  • Yasmin Schank
  • Gerd Mayer
  • Dieter Waloszek
  • Gerhard Maier


Substrate choice, swimming activity and risk to predation by burbot (Lota lota) of the well established Gammarus roeselii and the invader Dikerogammarus villosus were studied in mixed and single-species aquarium experiments. We used stones, gravel and aquatic weeds (Elodea, Chara) as substrates. We hypothesized that both species have different substrate preferences and that substrate affects the predation risk. We also assumed that presence of D. villosus influences substrate preference and predation risk of G. roeselii since the invader is known to affect the behavior of other gammarids. Adults of D. villosus in single species experiments and juveniles in mixed and single species experiments were evenly distributed over the different substrates but adults in mixed species experiments were more likely to prefer stone substrate. In contrast, adults and juveniles of G. roeselii clearly preferred aquatic weeds independent of the presence/absence of the invader. Both species preferred substrates with fissured surface over substrates with smooth surface. Gammarus roeselii was observed swimming more often than D. villosus in the open water but its swimming activity was lower when its preferred substrate was present compared with its swimming activity if non-preferred substrates were present. Predation rate of burbot on D. villosus was comparatively low and independent of the substrate. Burbot consumed many more G. roeselii than D. villosus, both in mixed and single species experiments. But when the preferred substrate of G. roeselii (weeds) was used in the experiments, predation rate of burbot on G. roeselii was somewhat lower than that when non-preferred substrates were present. The results of the experiments support our hypothesis that the gammarids studied here have different substrate preferences and that presence of the preferred substrate can affect predation risk. However, there is no evidence that presence of D. villosus affected substrate choice or predation risk in G. roeselii. We consider that differences in use of spatial niches permit co-existence of G. roeselii and D. villosus in the wild when substrates are diverse. The fact that G. roeselii than D. villosus is more often observed swimming in the open water may explain its higher risk of being captured by fish.


Amphipods Substrate choice Swimming activity Risk to fish predation 



This study is part of the project “ANEBO” (Aquatische Neozoen im Bodensee und seinen Zuflüssen); it is financially supported by the European Union within the scope of the Interreg III A programme. We are grateful for this support. We thank anonymous reviewers and R. Gulati for valuable critical comments on an earlier version of this manuscript. We also thank members of the staff of Reiner Eckmann (Konstanz) who provided burbots used in our experiments.


  1. Bailey MM (1972) Age, growth, reproduction, and food of the burbot, Lota lota (Linnaeus), in Southwestern Lake Superior. Trans Am Fish Soc 101:667–674. doi: 10.1577/1548-8659(1972)101<667:AGRAFO>2.0.CO;2 CrossRefGoogle Scholar
  2. Baumgärtner D, Jungbluth A-D, Koch U, von Elert E (2002) Effects of infochemicals on microhabitat choice by the freshwater amphipod Gammarus roeseli. Arch Hydrobiol 155:353–367Google Scholar
  3. Baumgärtner D, Koch U, Rothhaupt K-O (2003) Alteration of kairomone-induced response of the freshwater amphipod Gammarus roeseli by sediment type. J Chem Ecol 29:1391–1401. doi: 10.1023/A:1024213403537 CrossRefPubMedGoogle Scholar
  4. Bollache L, Kaldonski N, Troussard J-P, Lagrue C, Tierry R (2006) Spines and behaviour as defences against fish predators in an invasive freshwater amphipod. Anim Behav 72:627–633. doi: 10.1016/j.anbehav.2005.11.020 CrossRefGoogle Scholar
  5. Dahl J (1998) Effects of a benthivorous and a drift feeding fish on a benthic stream assemblage. Oecologia 116:426–432. doi: 10.1007/s004420050606 CrossRefGoogle Scholar
  6. Dahl J, Greenberg L (1996) Effects of habitat structure on habitat use by Gammarus pulex in artificial streams. Freshw Biol 36:487–495. doi: 10.1046/j.1365-2427.1996.00096.x CrossRefGoogle Scholar
  7. De Lange HJ, Lüring M, Van Den Borne B, Peeters THM (2005) Attraction of the amphipod Gammarus pulex to water-borne cues of food. Hydrobiologia 544:19–25. doi: 10.1007/s10750-004-7896-y CrossRefGoogle Scholar
  8. Devin S, Piscart C, Beisel JN, Moreteau JC (2003) Ecological traits of the amphipod invader Dikerogammarus villosus on a mesohabitat scale. Arch Hydrobiol 158:43–56. doi: 10.1127/0003-9136/2003/0158-0043 CrossRefGoogle Scholar
  9. Dick JTA, Platvoet D (2000) Invading predatory crustacean Dikerogammarus villosus eliminates both native and exotic species. P R Soc Lond B Bio 267:977–983. doi: 10.1098/rspb.2000.1099 CrossRefGoogle Scholar
  10. Dick JTA, Platvoet D, Kelly DW (2002) Predatory impact of the freshwater invader Dikerogammarus villosus (Crustacea: Amphipoda). Can J Fish Aquat Sci 59:1078–1084. doi: 10.1139/f02-074 CrossRefGoogle Scholar
  11. Eckmann R, Mörtl M, Baumgärtner D, Berron C, Fischer P, Schleuter D, Weber A (2008) Consumption of amphipods by littoral fish after the replacement of native Gammarus roeseli by invasive Dikerogammarus villosus in Lake Constance. Aquat Invasions 3:184–188Google Scholar
  12. Elliott JM (2005) Day-night changes in the spatial distribution and habitat preferences of freshwater shrimps, Gammarus pulex, in a stony stream. Freshw Biol 50:552–566. doi: 10.1111/j.1365-2427.2005.01345.x CrossRefGoogle Scholar
  13. Franken RJM, Batten S, Beijer JAJ, Gardeniers JJP, Scheffer M, Peeters ETHM (2006) Effects of interstitial refugia and current velocity on growth of the amphipod Gammarus pulex Linnaeus. J N Am Benthol Soc 25:656–663. doi: 10.1899/0887-3593(2006)25[656:EOIRAC]2.0.CO;2 CrossRefGoogle Scholar
  14. Gergs R, Rothhaupt K-O (2008) Effects of zebra mussels on an native amphipod and the invasive Dikerogammarus villosus: the influence of biodeposition and structural complexity. J N Am Benthol Soc 27:541–548. doi: 10.1899/07-151.1 CrossRefGoogle Scholar
  15. Grabowski M, Jazdzewski K, Konopacka A (2007) Alien crustacea on polish waters–amphipoda. Aquat Invasions 2:25–38. doi: 10.3391/ai.2007.2.1.3 CrossRefGoogle Scholar
  16. Hesselschwerdt J, Necker J, Wantzen KM (2008) Gammarids in Lake Constance: habitat segregation between the invasive Dikerogammarus villosus and the indigenous Gammarus roeselii. Fundam Appl Limnol 173:177–186. doi: 10.1127/1863-9135/2008/0173-0177 CrossRefGoogle Scholar
  17. Hoyle JD, Holomuzki JR (1990) Effect of predatory fish presence on habitat use and diel movement of the stream amphipod Gammarus minus. Freshw Biol 24:509–517. doi: 10.1111/j.1365-2427.1990.tb00728.x CrossRefGoogle Scholar
  18. Kaldonski N, Perrot-Minnot M-J, Cézilly F (2007) Differential influence of two acanthocephalan parasites on the antipredator behaviour of their common intermediate host. Anim Behav 74:1311–1317. doi: 10.1016/j.anbehav.2007.02.027 CrossRefGoogle Scholar
  19. Kaldonski N, Lagrue C, Motreuil S, Rigaud T, Bollache L (2008) Habitat segregation mediates predation by the benthic fish Cottus gobio on the exotic amphipod species Gammarus roeseli. Naturwissenschaften 95:839–844. doi: 10.1007/s00114-008-0392-x CrossRefPubMedGoogle Scholar
  20. Kinzler W, Maier G (2003) Asymmetry in mutual predation: possible reason for the replacement of native gammarids by invasives. Arch Hydrobiol 157:473–481. doi: 10.1127/0003-9136/2003/0157-0473 CrossRefGoogle Scholar
  21. Kinzler W, Maier G (2006) Selective predation by fish: a further reason for the decline of native gammarids in the presence of invasives? J Limnol 65:27–34Google Scholar
  22. Kley A, Maier G (2003) Life history characteristics of the invasive freshwater gammarids Dikerogammarus villosus and Echinogammarus ischnus in the river Main and the Main–Donau canal. Arch Hydrobiol 156:473–481. doi: 10.1127/0003-9136/2003/0156-0457 Google Scholar
  23. Kley A, Maier G (2005) An example of niche partitioning between Dikerogammarus villosus and other invasive and native gammarids: a field study. J Limnol 64:85–88Google Scholar
  24. Kley A, Maier G (2006) Reproductive characteristics of invasive gammarids in the Rhine-Main-Danube catchment, South Germany. Limnologica 36:79–90. doi: 10.1016/j.limno.2006.01.002 Google Scholar
  25. Kobak J, Zytkowicz (2007) Preferences of invasive Ponto-Caspian and native gammarids for zebra mussel (Dreissena polymorpha, Bivalvia) shell habitat. Hydrobiologia 589:43–54. doi: 10.1007/s10750-007-0716-4 CrossRefGoogle Scholar
  26. Krisp H (2004) Substratpräferenz, Aktivität, Prädationsneigung und Wachstum von neozoischen und heimischen Gammaridenarten. Diploma Thesis in Biology, University of Ulm,. 67 ppGoogle Scholar
  27. Lods-Crozet B, Reymond O (2006) Bathymetric expansion of an invasive gammarid (Dikerogammarus villosus, crustacea, amphipoda) in Lake Leman. J Limnol 65:141–144Google Scholar
  28. Mac Neil C, Elwood RW, Dick JTA (1999) Predator-prey interactions between brown trout Salmo trutta and native and introduced amphipods; their implications for fish diets. Ecography 22:686–696. doi: 10.1111/j.1600-0587.1999.tb00518.x CrossRefGoogle Scholar
  29. MacNeil C, Dick JTA, Elwood RW (1997) The trophic ecology of freshwater Gammarus (crustacea: amphipoda); problems and perspectives concerning the functional feeding group concept. Biol Rev Camb Philos Soc 72:349–364. doi: 10.1017/S0006323196005038 CrossRefGoogle Scholar
  30. MacNeil C, Elwood RW, Dick JTA (2000) Factors influencing the importance of Gammarus spp. (Crustacea: Amphipoda) in riverine salmonid diets. Arch Hydrobiol 149:87–107Google Scholar
  31. MacNeil C, Platvoet D, Dick JTA (2008) Potential roles for differential body size and microhabitat complexity in mediating biotic interactions within invasive freshwater amphipod assemblages. Fundam Appl Limnol 172:175–182. doi: 10.1127/1863-9135/2008/0172-0175 CrossRefGoogle Scholar
  32. Mathis A, Hoback W (1997) The influence of chemical stimuli from predators on precopulatory pairing by the amphipod, Gammarus pseudolimnaeus. Ethology 103:33–40CrossRefGoogle Scholar
  33. Mayer G, Maier G, Maas A, Waloszek D (2008) Mouthparts of the Ponto-Caspian invader Dikerogammarus villosus (amphipoda: pontogammaridae). J Crustac Biol 28:1–15. doi: 10.1651/07-2867R.1 CrossRefGoogle Scholar
  34. Mayer G, Maier G, Maas A, Waloszek D (2009) Mouthpart morphology of Gammarus roeselii compared to a successful invader, Dikerogammarus villosus (Amphipoda). J Crustac Biol (in press)Google Scholar
  35. Mazzi D, Bakker TCM (2003) A predator’s dilemma: prey choice and parasite susceptibility in three-spined sticklebacks. Parasitology 126:339–347. doi: 10.1017/S0031182003003019 CrossRefPubMedGoogle Scholar
  36. McGrath KE, Peeters ETHM, Beijer JAJ, Scheffer M (2007) Habitat-mediated cannibalism and microhabitat restriction in the stream invertebrate Gammarus pulex. Hydrobiologia 589:155–164. doi: 10.1007/s10750-007-0731-5 CrossRefGoogle Scholar
  37. Mörtl M, Mürle U, Ortlepp J, Rey P, Schleifhacken N, Werner S (2004) Dikerogammarus villosus (crustacea: amphipoda) und Corbicula fluminea (Bivalvia: Veneroidea) im Bodensee. In: Wirbellose Neozoen im Bodensee. LfU Baden-Württemberg, Institut für Seenforschung. City Satz GmbH, Herxheim, pp 15–30Google Scholar
  38. Mürle U, Becker A, Rey P (2004) Dikerogammarus villosus (amphipoda), new in Lake Constance. Lauterbornia 49:77–79Google Scholar
  39. Newman RM, Waters TH (1984) Size-selective predation on Gammarus pseudolimnaeus by trout and sculpins. Ecology 65:1535–1545. doi: 10.2307/1939133 CrossRefGoogle Scholar
  40. Palmer ME, Ricciardi A (2004) Physical factors affecting the relative abundance of native and invasive amphipods in the St Lawrence River. Can J Zool 82:1886–1893. doi: 10.1139/z04-186 CrossRefGoogle Scholar
  41. Pennuto C, Keppler D (2008) Short-term predator avoidance behaviours by invasive and native amphipods in the Great Lakes. Aquat Ecol 42:629–641. doi: 10.1007/s10452-007-9139-6 CrossRefGoogle Scholar
  42. Piscart C, Manach A, Copp GH, Marmonier P (2007) Distribution and microhabitats of native and non-native gammarids (amphipoda, crustacea) in Brittany, with particular reference to the endangered endemic sub-species Gammarus duebeni celticus. J Biogeogr 34:524–533. doi: 10.1111/j.1365-2699.2006.01609.x CrossRefGoogle Scholar
  43. Platvoet D, Dick JTA, Konijnendijk N, van der Velde G (2006) Feeding of micro-algae in the invasive Ponto-Caspian amphipod Dikerogammarus villosus (Sowinsky, 1894). Aquat Ecol 40:237–245. doi: 10.1007/s10452-005-9028-9 CrossRefGoogle Scholar
  44. Pöckl M (1995) Laboratory studies on growth, feeding, moulting and mortality in the freshwater amphipods Gammarus fossarum and G. roeseli. Arch Hydrobiol 134:223–253Google Scholar
  45. Ponyi E (1956) Ökologische, ernährungsbiologische und systematische Untersuchungen an verschiedenen Gammarus-Arten. Annu Rev Ecol Syst 20:297–330Google Scholar
  46. Ponyi E (1961) Über Ernährung einiger Amphipoden (Crustacea) in Ungarn. Ann Inst Biol Tihany 28:117–123Google Scholar
  47. Ryder RA, Pesendorfer J (1992) Food, growth, habitat, and community interactions of young-of-the year burbot, Lota lota L., in a precambrian Shield lake. Hydrobiologia 243–244:211–227CrossRefGoogle Scholar
  48. Sudo H, Azeta M (2001) The microhabitat and size of gammarid species selectively predated by young red sea bream Pagrus major. Fish Sci 67:389–400. doi: 10.1046/j.1444-2906.2001.00274.x CrossRefGoogle Scholar
  49. Van Dolah RF (1978) Factors regulating the distribution and population dynamics of the amphipod Gammarus palustris in an intertidal salt mars community. Ecol Monogr 48:191–217. doi: 10.2307/2937299 CrossRefGoogle Scholar
  50. Van Overdijk CDA, Grigorovich IA, Mabee T, Ray WJ, Ciborowski JJH, MacIsaac HJ (2003) Microhabitat selection by the invasive amphipod Echinogammarus ischnus and native Gammarus fasciatus in laboratory experiments and in Lake Erie. Freshw Biol 48:567–578. doi: 10.1046/j.1365-2427.2003.01041.x CrossRefGoogle Scholar
  51. Van Riel M, van der Velde G, Rajagopal S, Marguillier S, Dehairs F, bij de Vaate A (2006) Trophic relationships in the Rhine food web during invasion and after establishment of the Ponto-Caspian invader Dikerogammarus villosus. Hydrobiologia 565:39–58. doi: 10.1007/s10750-005-1904-8 CrossRefGoogle Scholar
  52. Van Riel M, Healy EP, van der Velde G, bij de Vaate A (2007) Interference competition among native and invader amphipods. Acta Oecol 31:282–289. doi: 10.1016/j.actao.2006.12.006 CrossRefGoogle Scholar
  53. Wijnhoven S, van Riel MC, van der Velde G (2003) Exotic and indigenous freshwater gammarid species: physiological tolerance to water temperature in relation to ionic content of the water. Aquat Ecol 37:151–158. doi: 10.1023/A:1023982200529 CrossRefGoogle Scholar
  54. Williams DD, Moore (1982) The effect of environmental factors on the activity of Gammarus pseudolimnaeus (amphipoda). Hydrobiologia 96:137–147. doi: 10.1007/BF02185429 CrossRefGoogle Scholar
  55. Wooster DE (1998) Amphipod (Gammarus minus) reseponses to predators and predator impact on amphipod density. Oecologia 115:253–259. doi: 10.1007/s004420050514 CrossRefGoogle Scholar
  56. Wudkevich K, Wisenden BD, Chivers DP, Smith RJF (1997) Reactions of Gammarus lacustris to chemical stimuli from natural predators and injured conspecifics. J Chem Ecol 23:1163–1173. doi: 10.1023/B:JOEC.0000006393.92013.36 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Axel Kley
    • 1
  • Werner Kinzler
    • 1
  • Yasmin Schank
    • 2
  • Gerd Mayer
    • 3
  • Dieter Waloszek
    • 3
  • Gerhard Maier
    • 1
    • 4
  1. 1.Department of Experimental EcologyUniversity of UlmUlmGermany
  2. 2.Department TriesdorfSchool of Applied SciencesWeidenbach, WeihenstephanGermany
  3. 3.Biosystematic DocumentationUniversity of UlmUlmGermany
  4. 4.Bureau of Aquatic EcologySendenGermany

Personalised recommendations