Aquatic Ecology

, Volume 43, Issue 4, pp 943–950 | Cite as

Good food versus bad food: the role of sterols and polyunsaturated fatty acids in determining growth and reproduction of Daphnia magna

  • Dominik Martin-Creuzburg
  • Eric von Elert


The absence of dietary sterols and polyunsaturated fatty acids (PUFAs) has been shown to affect the performance of the freshwater herbivore Daphnia. Here, we compared somatic growth rates and clutch sizes of Daphnia magna reared on a diet of low food quality (Synechococcus elongatus) and of high food quality (Cryptomonas sp.) and investigated if and to what extent the absence of sterols or PUFAs in the cyanobacterium S. elongatus accounts for the observed differences in food quality. The supplementation of S. elongatus with cell-free lipid extracts (fatty acids, sterols, total lipids) obtained from the flagellate Cryptomonas sp. suggested that the superior food quality of Cryptomonas sp. is predominantly, but not completely, a combined effect of its sterol and PUFA composition. Our laboratory study suggests that somatic growth of D. magna feeding on S. elongatus is primarily constrained by the absence of sterols, whereas egg production is primarily limited by the absence of long chain PUFAs.


Sterols Polyunsaturated fatty acids Liposomes Growth Reproduction 



We thank P. Merkel for excellent technical assistance. This work was supported by the German Research Foundation (DFG, EI 179/4-2).


  1. Becker C, Boersma M (2005) Differential effects of phosphorus and fatty acids on Daphnia magna growth and reproduction. Limnol Oceanogr 50:388–397Google Scholar
  2. Carpenter SR, Cole JJ, Hodgson JR, Kitchell JF, Pace ML, Bade D, Cottingham KL, Essington TE, Houser JN, Schindler DE (2001) Trophic cascades, nutrients, and lake productivity: whole-lake experiments. Ecol Monogr 71:163–186CrossRefGoogle Scholar
  3. DeMott WR, Edington JR, Tessier AJ (2004) Testing zooplankton food limitation across gradients of depth and productivity in small stratified lakes. Limnol Oceanogr 49:1408–1416Google Scholar
  4. Gladu PK, Patterson GW, Wikfors GH, Chitwood DJ, Lusby WR (1990) The occurrence of brassicasterol and epibrassicasterol in the chromophycota. Comp Biochem Physiol B 97:491–494. doi: 10.1016/0305-0491(90)90149-N CrossRefGoogle Scholar
  5. Gladyshev MI, Sushchik NN, Dubovskaya OP, Makhutova ON, Kalachova GS (2006) Influence of sestonic elemental and essential fatty acid contents in a eutrophic reservoir in Siberia on population growth of Daphnia (longispina group). J Plankton Res 28:907–917. doi: 10.1093/plankt/fbl028 CrossRefGoogle Scholar
  6. Gladyshev MI, Sushchik NN, Dubovskaya OP, Makhutova ON, Kalachova GS (2008) Growth rate of Daphnia feeding on seston in a Siberian reservoir: the role of essential fatty acid. Aquat Ecol 42:617–627. doi: 10.1007/s10452-007-9146-7 CrossRefGoogle Scholar
  7. Goad LJ (1981) Sterol biosynthesis and metabolism in marine invertebrates. Pure Appl Chem 51:837–852. doi: 10.1351/pac198153040837 CrossRefGoogle Scholar
  8. Grieneisen ML (1994) Recent advances in our knowledge of ecdysteroid biosynthesis in insects and crustaceans. Insect Biochem Mol Biol 24:115–132. doi: 10.1016/0965-1748(94)90078-7 CrossRefGoogle Scholar
  9. Guillard RR (1975) Cultures of phytoplankton for feeding of marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of marine invertebrate animals. Plenum Press, New York, pp 26–60Google Scholar
  10. Harrison KE (1990) The role of nutrition in maturation, reproduction and embryonic development of decapod crustaceans: a review. J Shellfish Res 9:1–28Google Scholar
  11. Jüttner F, Leonhardt J, Möhren S (1983) Environmental factors affecting the formation of mesityloxid, dimethylallylic alcohol and other volatile compounds excreted by Anabaena cylindrica. J Gen Microbiol 129:407–412Google Scholar
  12. Lampert W (1991) The dynamics of Daphnia in a shallow lake. Verh Int Verein Limnol 24:795–798Google Scholar
  13. Leibold MA (1989) Resource edibility and the effects of predators and productivity on the outcome of trophic interactions. Am Nat 134:922–949. doi: 10.1086/285022 CrossRefGoogle Scholar
  14. Martin-Creuzburg D, von Elert E (2004) Impact of 10 dietary sterols on growth and reproduction of Daphnia galeata. J Chem Ecol 30:483–500. doi: 10.1023/B:JOEC.0000018624.94689.95 CrossRefPubMedGoogle Scholar
  15. Martin-Creuzburg D, Wacker A, von Elert E (2005a) Life history consequences of sterol availability in the aquatic keystone species Daphnia. Oecologia 144:362–372. doi: 10.1007/s00442-005-0090-8 CrossRefPubMedGoogle Scholar
  16. Martin-Creuzburg D, Bec A, von Elert E (2005b) Trophic upgrading of picocyanobacterial carbon by ciliates for nutrition of Daphnia magna. Aquat Microb Ecol 41:271–280. doi: 10.3354/ame041271 CrossRefGoogle Scholar
  17. Martin-Creuzburg D, Westerlund SA, Hoffmann KH (2007) Ecdysteroid levels in Daphnia magna during a molt cycle: determination by radioimmunoassay (RIA) and liquid chromatography–mass spectrometry (LC–MS). Gen Comp Endocrinol 151:66–71. doi: 10.1016/j.ygcen.2006.11.015 CrossRefPubMedGoogle Scholar
  18. Martin-Creuzburg D, von Elert E, Hoffmann KH (2008) Nutritional constraints at the cyanobacteria—Daphnia magna interface: the role of sterols. Limnol Oceanogr 53:456–468Google Scholar
  19. Müller-Navarra DC (1995) Evidence that a highly unsaturated fatty acid limits Daphnia growth in nature. Arch Hydrobiol 132:297–307Google Scholar
  20. Müller-Navarra DC, Brett M, Liston AM, Goldman CR (2000) A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Nature 403:74–77. doi: 10.1038/47469 CrossRefPubMedGoogle Scholar
  21. Ravet JL, Brett MT, Müller-Navarra DC (2003) A test of the role of polyunsaturated fatty acids in phytoplankton food quality for Daphnia using liposome supplementation. Limnol Oceanogr 48:1938–1947Google Scholar
  22. Stanley D (2006) Prostaglandins and other eicosanoids in insects: biological significance. Annu Rev Entomol 51:25–44. doi: 10.1146/annurev.ento.51.110104.151021 CrossRefPubMedGoogle Scholar
  23. Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, PrincetonGoogle Scholar
  24. Von Elert E (2002) Determination of limiting polyunsaturated fatty acids in Daphnia galeata using a new method to enrich food algae with single fatty acids. Limnol Oceanogr 47:1764–1773Google Scholar
  25. Von Elert E, Wolffrom T (2001) Supplementation of cyanobacterial food with polyunsaturated fatty acids does not improve growth of Daphnia. Limnol Oceanogr 46:1552–1558Google Scholar
  26. Von Elert E, Martin-Creuzburg D, Le Coz JR (2003) Absence of sterols constrains carbon transfer between cyanobacteria and a freshwater herbivore (Daphnia galeata). Proc R Soc Lond B Biol Sci 270:1209–1214. doi: 10.1098/rspb.2003.2357 CrossRefGoogle Scholar
  27. Wacker A, Martin-Creuzburg D (2007) Allocation of essential lipids in Daphnia magna during exposure to poor food quality. Funct Ecol 21:738–747. doi: 10.1111/j.1365-2435.2007.01274.x CrossRefGoogle Scholar
  28. Wacker A, von Elert E (2001) Polyunsaturated fatty acids: evidence for non-substitutable biochemical resources in Daphnia galeata. Ecology 82:2507–2520Google Scholar
  29. Weers PMM, Gulati RD (1997) Effects of the addition of polyunsaturated fatty acids to the diet on the growth and fecundity of Daphnia galeata. Freshw Biol 38:721–729. doi: 10.1046/j.1365-2427.1997.00237.x CrossRefGoogle Scholar
  30. Wilson AE, Sarnelle O, Tillmanns AR (2006) Effects of cyanobacterial toxicity and morphology on the population growth of freshwater zooplankton: meta-analyses of laboratory experiments. Limnol Oceanogr 51:1915–1924Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Limnological InstituteUniversity of KonstanzConstanceGermany
  2. 2.Zoological InstituteUniversity of CologneCologneGermany

Personalised recommendations