Aquatic Ecology

, Volume 43, Issue 4, pp 1031–1040 | Cite as

Temporal variation of amphipod assemblages associated with Sargassum filipendula (Phaeophyta) and its epiphytes in a subtropical shore

  • Giuliano Buzá Jacobucci
  • Marcel Okamoto Tanaka
  • Fosca Pedini Pereira Leite


The phytal assemblages change in response to variation in biological and environmental conditions. In the present study, we evaluated the temporal variation of amphipod assemblages associated with a Sargassum filipendula bed in a subtropical shore, in relation to variation of the host alga, its epiphytes and local environmental conditions. Samples of S. filipendula with associated amphipods, water temperature, water movement and suspended solids were obtained monthly from June 2000 to May 2001. We recorded 24 species of amphipods associated with S. filipendula. Species richness varied throughout the year, with maximum values in October 2000 and minimum in April 2001. Total amphipod density gradually increased during the sampling period, with the highest value in March 2001. Amphipod diversity and evenness were both positively influenced by epiphyte load and negatively by temperature, with higher values during summer months. Total density and tube-builder density were also positively influenced by temperature, whereas nestler density was influenced by epiphyte load. Individual amphipod species showed significant density fluctuations over the year. The canonical correspondence analysis performed explained 88.2% of the variation, with a strong correlation of water movement, temperature and suspended solids with the first axis, and a strong effect of epiphyte load on both the first and the second axes. The temporal structural variation of the studied algal bed strongly influenced amphipod diversity and assemblage composition, possibly through direct and indirect effects.


Sargassum bed Amphipod assemblages Epiphytes Environmental factors 



We thank D. F. C. Jacobucci and A. Turra for their help in the field. This work was partially funded by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (Process 99/11325-9) and Fundo de Apoio ao Ensino, à Pesquisa e à Extensão da Universidade Estadual de Campinas (FAEPEX-UNICAMP).


  1. Ang PO (2006) Phenology of Sargassum spp. in Tung Ping Chau Marine Park, Hong Kong SAR, China. J Appl Phycol 18:629–636. doi: 10.1007/s10811-006-9071-5 CrossRefGoogle Scholar
  2. Barnard JL, Karaman GS (1991) The families and genera of marine gammaridean amphipoda (except marine gammaroids). Parts 1 and 2. Rec Aust Mus (Suppl 13):1–866Google Scholar
  3. Borum J (1987) Dynamics of epiphyton on eelgrass (Zostera marina L.) leaves: relative roles of algal growth, herbivory and substratum turnover. Limnol Oceanogr 32:986–992CrossRefGoogle Scholar
  4. Caine EA (1977) Feeding mechanisms and possible resource partitioning of the Caprellidae (Crustacea: Amphipoda) from Puget Sound, USA. Mar Biol (Berl) 42:331–333. doi: 10.1007/BF00402195 CrossRefGoogle Scholar
  5. Cruz-Rivera E, Hay ME (2001) Macroalgal traits and the feeding and fitness of an herbivorous amphipod: the roles of selectivity, mixing, and compensation. Mar Ecol Prog Ser 218:249–266. doi: 10.3354/meps218249 CrossRefGoogle Scholar
  6. Duffy JE, Hay ME (1994) Herbivore resistance to seaweed chemical defense: the roles of mobility and predation risk. Ecology 75:1304–1319. doi: 10.2307/1937456 CrossRefGoogle Scholar
  7. Edgar GJ (1983) The ecology of south–east Tasmanian phytal animal communities. II. Seasonal change in plant and animal populations. J Exp Mar Biol Ecol 70:159–179. doi: 10.1016/0022-0981(83)90128-4 CrossRefGoogle Scholar
  8. Edgar GJ (1990) Population regulation, population dynamics and competition amongst mobile epifauna associated with seagrass. J Exp Mar Biol Ecol 144:205–234. doi: 10.1016/0022-0981(90)90029-C CrossRefGoogle Scholar
  9. Edgar GJ, Moore PG (1986) Macroalgae as habitats for motile macrofauna. Monogr Biol 4:255–277Google Scholar
  10. Edgar GJ, Shaw C, Watson GF et al (1994) Comparisons of species richness, size-structure and production of benthos in vegetated and unvegetated habitats in Western Port, Victoria. J Exp Mar Biol Ecol 176:201–226. doi: 10.1016/0022-0981(94)90185-6 CrossRefGoogle Scholar
  11. Fenwick GD (1976) The effect of wave exposure on the amphipod fauna of the alga Caulerpa brownii. J Exp Mar Biol Ecol 25:1–18. doi: 10.1016/0022-0981(76)90072-1 CrossRefGoogle Scholar
  12. Hacker SD, Steneck RS (1990) Habitat architecture and body-size-dependent habitat selection of a phytal amphipod. Ecology 71:2269–2285. doi: 10.2307/1938638 CrossRefGoogle Scholar
  13. Hall MO, Bell SS (1988) Response of small motile epifauna to complexity of epiphytic algae on seagrass blades. J Mar Res 46:613–630. doi: 10.1357/002224088785113531 CrossRefGoogle Scholar
  14. Heck KL Jr, Wetstone GS (1977) Habitat complexity and invertebrate species richness and abundance in tropical seagrass meadows. J Biogeogr 4:135–142. doi: 10.2307/3038158 CrossRefGoogle Scholar
  15. Jacobucci GB, Leite FPP (2002) Distribuição vertical e flutuação sazonal da macrofauna vágil associada a Sargassum cymosum C. Agardh, na praia do Lázaro, Ubatuba, São Paulo, Brasil. Revta bras Zool 19(Suppl 1):87–100Google Scholar
  16. Jacobucci GB, Tanaka MO, Leite FPP (in press) Factors influencing temporal variation of a Sargassum filipendula (Phaeophyta, Fucales) bed in a subtropical shore. J Mar Biol Assoc U KGoogle Scholar
  17. James PL, Heck KL Jr (1994) The effects of habitat complexity and light intensity on ambush predation within a simulated seagrass bed. J Exp Mar Biol Ecol 176:187–200. doi: 10.1016/0022-0981(94)90184-8 CrossRefGoogle Scholar
  18. Jernakoff P, Brearley A, Nielsen J (1996) Factors affecting grazer-epiphyte interactions in temperate seagrass meadows. Oceanogr Mar Biol Ann Rev 34:109–162Google Scholar
  19. Johnson SC, Scheibling RE (1987) Structure and dynamics of epifaunal assemblages on intertidal macroalgae Ascophylum nodosum and Fucus vesiculosus in Nova Scotia, Canada. Mar Ecol Prog Ser 37:209–227. doi: 10.3354/meps037209 CrossRefGoogle Scholar
  20. Leber KM (1985) The influence of predatory decapods, refuge, and microhabitat selection on seagrass communities. Ecology 66:1951–1964. doi: 10.2307/2937391 CrossRefGoogle Scholar
  21. Leite FPP, Turra A (2003) Temporal variation in Sargassum biomass, Hypnea epiphytism and associated fauna. Braz Arch Biol Technol 46:665–671. doi: 10.1590/S1516-89132003000400021 CrossRefGoogle Scholar
  22. Martin-Smith KM (1993) Abundance of mobile epifauna: the role of habitat complexity and predation by fishes. J Exp Mar Biol Ecol 174:243–260. doi: 10.1016/0022-0981(93)90020-O CrossRefGoogle Scholar
  23. Moore PG (1978) Turbidity and kelp hodfast Amphipoda.I. Wales and S.W. England. J Exp Mar Biol Ecol 32:53–96. doi: 10.1016/0022-0981(78)90099-0 CrossRefGoogle Scholar
  24. Nelson AN, Waaland JR (1997) Seasonality of eelgrass, epiphyte, and grazer biomass and productivity in subtidal eelgrass meadows subjected to moderate tidal amplitude. Aquat Bot 56:51–74. doi: 10.1016/S0304-3770(96)01094-7 CrossRefGoogle Scholar
  25. Orth RJ, van Montfrans J (1984) Epiphyte-seagrass relationship with an emphasis on the role of micrograzing: a review. Aquat Bot 18:43–69. doi: 10.1016/0304-3770(84)90080-9 CrossRefGoogle Scholar
  26. Paula EJ (1988) O gênero Sargassum C. Ag. (Phaeophyta-Fucales) no litoral do Estado de São Paulo, Brasil. Bolm Bot 10:65–118Google Scholar
  27. Pereira PHC, Jacobucci GB (2008) Diet and feeding behavior of Malacoctenus delalandii (Perciformes: Labrisomidae). Biota Neotrop 8(3):141–149. doi: 10.1590/S1676-06032008000300014 CrossRefGoogle Scholar
  28. Prince JS (1974) The ecology of Sargassum filipendula. I. Effect of temperature and photoperiod on growth and reproduction. J Phycol 10 (Suppl 2):10Google Scholar
  29. Russo AR (1990) The role of seaweed complexity in structuring Hawaiian epiphytal amphipod communities. Hydrobiologia 194:1–12. doi: 10.1007/BF00012107 CrossRefGoogle Scholar
  30. Salemaa H (1987) Herbivory and microhabitat preferences of Idotea spp. (Isopoda) in the northern Baltic Sea. Ophelia 27:1–16Google Scholar
  31. Sánchez-Moyano JE, Estacio FJ, García-Adiego EM et al (2001) Effect of the vegetative cycle of Caulerpa prolifera on the spatio-temporal variation of invertebrate macrofauna. Aquat Bot 70:163–174. doi: 10.1016/S0304-3770(00)00144-3 CrossRefGoogle Scholar
  32. Schneider SI, Mann KH (1991) Fishes specific relationships of invertebrates to vegetation in a seagrass bed. II. Experiments on the importance of macrophytes shape, epiphytes cover and production. J Exp Mar Biol Ecol 145:119–139. doi: 10.1016/0022-0981(91)90009-L CrossRefGoogle Scholar
  33. Széchy MTM, Paula EJ (1997) Macroalgas epífitas em Sargassum (Phaeophyta—Fucales) do litoral dos estados do Rio de Janeiro e São Paulo, Brasil. Leandra 12:1–10Google Scholar
  34. Széchy MTM, Galliez M, Marconi MI (2006) Quantitative variables applied to phenological studies of Sargassum vulgare C. Agardh (Phaeophyceae—Fucales) from Ilha Grande Bay, State of Rio de Janeiro. Rev bras Bot 29:27–37CrossRefGoogle Scholar
  35. Takeuchi I, Hirano R (1991) Growth and reproduction of Caprella danilevskii (Crustacea: Amphipoda) reared in the laboratory. Mar Biol (Berl) 110:391–397. doi: 10.1007/BF01344358 CrossRefGoogle Scholar
  36. Tanaka MO, Leite FPP (2003) Spatial scaling in the distribution of macrofauna associated with Sargassum stenophyllum (Mertens) Martius: analyses of faunal groups, gammarid life habits, and assemblage structure. J Exp Mar Biol Ecol 293:1–22. doi: 10.1016/S0022-0981(03)00233-8 CrossRefGoogle Scholar
  37. Zimmerman R, Gibson R, Harrington J (1979) Herbivory and detritivory among gammaridean amphipods from a Florida seagrass community. Mar Biol (Berl) 54:41–47. doi: 10.1007/BF00387050 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Giuliano Buzá Jacobucci
    • 1
  • Marcel Okamoto Tanaka
    • 2
  • Fosca Pedini Pereira Leite
    • 3
  1. 1.Instituto de BiologiaUniversidade Federal de UberlândiaUberlândiaBrazil
  2. 2.Departamento de HidrobiologiaUniversidade Federal de São CarlosSão CarlosBrazil
  3. 3.Departamento de ZoologiaUniversidade Estadual de CampinasCampinasBrazil

Personalised recommendations