Advertisement

Aquatic Ecology

, Volume 43, Issue 4, pp 867–878 | Cite as

Balance between primary and bacterial production in North Patagonian shallow lakes

  • Marcela Bastidas NavarroEmail author
  • Beatriz Modenutti
  • Cristiana Callieri
  • Roberto Bertoni
  • Esteban Balseiro
Article

Abstract

The shallow Andean North Patagonian lakes are suitable environments for the evaluation of autotrophic and heterotrophic production under a scenario of high radiation in high dissolved organic matter (DOM) systems. We aimed to study the balance between primary and bacterial production in three shallow Andean lakes, in a summer sampling (high irradiance condition). Our hypothesis is that two factors would interact: high light and high DOM, affecting bacteria and algae. We carried out experiments of bacterial production (BP) by measuring [14C]-l-leucine incorporation and PP by 14C uptake in two fractions: picophytoplankton and phytoplankton >2 μm. Cell abundance, chlorophyll a, nutrients, DOM, light, and temperature were also measured. The contribution of picophytoplankton to total primary production (PP) was, in general, very high exceeding 50%. Picophytoplankton was photosynthetically more efficient than the larger autotrophs in all lakes. We observed a decrease in PP at surface levels due the high solar irradiances, while BP was not affected. Changes in the PP:BP ratios were observed in relation to DOM content and light effect. Our data indicate that the amount of available DOM drives the balance between PP and BP. However, solar radiation should be included as an important factor since PP:BP ratio may decrease because of PP photoinhibition.

Keywords

Picophytoplankton Phytoplankton >2 μm Bacterioplankton Primary and bacterial production Dissolved organic matter Shallow Andean lakes 

Notes

Acknowledgments

This work was carried out in a framework of collaboration projects CONICET-CNR and SECYT-MAE (Argentina-Italy) and was supported by FONCyT 01-13395 and CONICET PIP 6507. We thank Dr. Andrés Venturino, LIBIQUIMA, Universidad Nacional del Comahue at Neuquén, for laboratory facilities. We thank three anonymous reviewers whose comments greatly improved the manuscript.

References

  1. APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, WashingtonGoogle Scholar
  2. Balseiro EG, Modenutti BE (1990) Zooplankton dynamics of Lake Escondido (Río Negro, Argentina) with special reference to a population of Boeckella gracilipes (Copepoda, Calanoida). Int Rev Gesam Hydrobiol 75:475–491. doi: 10.1002/iroh.19900750405 CrossRefGoogle Scholar
  3. Balseiro EG, Modenutti BE, Queimaliños CP (1997) Nutrient recycling and shifts in N:P ratio by different zooplankton structures in a South Andes lake. J Plankton Res 19:805–817. doi: 10.1093/plankt/19.7.805 CrossRefGoogle Scholar
  4. Bastidas Navarro M, Balseiro E, Modenutti B (2008) Effect of UVR on lake water and macrophyte leachates in shallow Andean-Patagonian lakes: bacteria responses to changes in optical features. Photochem Photobiol. doi: 10.1111/j.1751-1097.2008.00442.x Google Scholar
  5. Bergström AK, Jansson M (2000) Bacterioplankton production in humic lake Örträsket in relation to input of bacterial cells and input of allochthonous. Microb Ecol 39:101–115. doi: 10.1007/s002480000007 CrossRefPubMedGoogle Scholar
  6. Bergström AK, Jansson M, Drakare S, Blomqvist P (2003) Occurrence of mixotrophic flagellates in relation to bacterioplankton production, light regime and availability of inorganic nutrients in unproductive lakes with differing humic contents. Freshw Biol 48:868–877. doi: 10.1046/j.1365-2427.2003.01061.x CrossRefGoogle Scholar
  7. Callieri C (2008) Picophytoplankton in freshwater ecosystems: the importance of small-sized phototrophs. Freshw Rev 1:1–28Google Scholar
  8. Callieri C, Amicucci E, Bertoni R, Vörös L (1996) Fluorometric characterization of two picocyanobacteria strains from different underwater light quality. Int Rev Gesam Hydrobiol 81:13–23. doi: 10.1002/iroh.19960810103 CrossRefGoogle Scholar
  9. Callieri C, Morabito G, Huot Y, Neale JP, Litchman E (2001) Photosynthetic response of pico-and nanoplanktonic algae to UVB, UVA and PAR in high mountain lake. Aquat Sci 63:286–293. doi: 10.1007/PL00001355 CrossRefGoogle Scholar
  10. Callieri C, Modenutti BE, Queimaliños CP, Bertoni R, Balseiro EG (2007) Production and biomass of picophytoplankton and larger autotrophs in Andean ultraoligotrophic lakes: differences in light harvesting efficiency in deep layers. Aquat Ecol 41:511–523. doi: 10.1007/s10452-007-9125-z CrossRefGoogle Scholar
  11. Carpenter SR, Cole JJ, Kitchell JF, Pace ML (1998) Impact of dissolved organic carbon, phosphorus, and grazing on phytoplankton biomass and production in experimental lakes. Limnol Oceanogr 43:73–80Google Scholar
  12. Currie DJ, Kalff J (1984) A comparison of the abilities of freshwater algae and bacteria to acquire and retain phosphorus. Limnol Oceanogr 29:298–310Google Scholar
  13. Díaz MM, Pedrozo FL (1993) Seasonal succession of phytoplankton in a small Andean Patagonian lake (Rep. Argentina) and some consideration about the PEG model. Arch Hydrobiol 127:167–184Google Scholar
  14. Díaz S, Camilión C, Deferrari G, Fuenzalida H, Armstrong R, Booth C, Paladini A, Cabrera S, Casiccia C, Lovengreen C, Pedroni J, Rosales A, Zagarese H, Vernet M (2006) Ozone and UV radiation over southern South America: climatology and anomalies. Photochem Photobiol 82:834–843. doi: 10.1562/2005-09-26-RA-697 CrossRefPubMedGoogle Scholar
  15. Drakare S, Blomqvist P, Bergstrom AK, Jansson M (2002) Primary production and phytoplankton composition in relation to DOC input and bacterioplankton production in humic Lake Örträsket. Freshw Biol 47:41–52CrossRefGoogle Scholar
  16. Fahnenstiel GL, Redalje DG, Lohrenz SE (1994) Has the importance of photoautotrophic picoplankton been overestimated? Limnol Oceanogr 39:432–438Google Scholar
  17. Gervais F, Padisák J, Koschel R (1997) Do light quality and low nutrient concentration favour picocyanobacteria below the thermocline of the oligotrophic Lake Stechlin? J Plankton Res 19:771–781. doi: 10.1093/plankt/19.6.771 CrossRefGoogle Scholar
  18. Greisberger S, Dokulil MT, Teubner K (2008) A comparison of phytoplankton size-fractions in Mondsee, an Alpine lake in Austria: distribution, pigment composition and primary production rates. Aquat Ecol 42:379–389CrossRefGoogle Scholar
  19. Gurung TB, Urabe J, Nakanishi M (1999) Regulation of the relationship between phytoplankton Scenedesmus acutus and heterotrophic bacteria by the balance of light and nutrients. Aquat Microb Ecol 17:27–35. doi: 10.3354/ame017027 CrossRefGoogle Scholar
  20. Hessen DO (1992) Dissolved organic carbon in a humic lake: effects on bacterial production and respiration. Hydrobiologia 229:115–123Google Scholar
  21. Hessen DO (1998) Food webs and carbon cycling in humic lakes. In: Hessen DO, Tranvik LJ (eds) Aquatic humic substances: ecology and biogeochemistry. Springer, Berlin, pp 285–316Google Scholar
  22. Hessen DO, Nygaard K, Salonen K, Vahatalo A (1994) The effects of substrate stoichiometry on microbial activity and carbon degradation in humic lakes. Environ Int 20:67–76. doi: 10.1016/0160-4120(94)90068-X CrossRefGoogle Scholar
  23. Huisman J, Sharples J, Stroom JM, Visser PM, Kardinaal WEA, Verspagen JMH, Sommeijer B (2004) Changes inturbulent mixing shift competition for light between phytoplankton species. Ecology 85:2960–2970. doi: 10.1890/03-0763 CrossRefGoogle Scholar
  24. Jansson M, Blomqvist P, Jonsson A, Bergstrom AK (1996) Nutrient limitation of bacterioplankton, autotrophic and mixotrophic phytoplankton, and heterotrophic nanoflagellates in Lake Örträsket. Limnol Oceanogr 41:1552–1559Google Scholar
  25. Jansson M, Bergstrom AK, Blomqvist P, Isaksson A, Jonsson A (1999) Impact of allochthonous organic carbon on microbial food web carbon dynamics and structure in Lake Örträsket. Arch Hydrobiol 144:409–428Google Scholar
  26. Jansson M, Bergstrom AK, Blomqvis P, Drakare S (2000) Allochthonous organic carbon and phytoplankton/bacterioplankton production relationships in lakes. Ecology 81:3250–3255Google Scholar
  27. Jones RI (1992) The influence of humic substances on lacustrine planktonic food chains. Hydrobiologia 229:73–91Google Scholar
  28. Jonsson A, Meili M, Bergström AK, Jansson M (2001) Whole-lake mineralization of allochthonous and autochthonous organic carbon in a large humic lake (Örträsket, N. Sweden). Limnol Oceanogr 46:1691–1700Google Scholar
  29. Karentz D, Bothwell ML, Coffin RB, Hanson A, Herndl GJ, Kilham SS, Lesser MP, Lindell M, Moeller RE, Morris DP, Neale PJ, Sanders RW, Weiler CS, Wetzel RG (1994) Impact of UV-B radiation on pelagic freshwater ecosystems: report of working group on bacteria and phytoplankton. Arch Hydrobiol Beih Ergebn Limnol 43:31–69Google Scholar
  30. Karlsson J, Jonsson A, Jansson M (2001) Bacterioplankton production in lakes along an altitude gradient in the subartic north of Sweden. Microb Ecol 42:372–382. doi: 10.1007/s00248-001-0009-9 CrossRefPubMedGoogle Scholar
  31. Katano T, Nakano S, Ueno H, Mitamura O, Anbutsu K, Kihira M, Satoh Y, Drucker V, Sugiyama M (2005) Abundance, growth and grazing loss rates of picophytoplankton in Barguzin Bay, Lake Baikal. Aquat Ecol 39:431–438. doi: 10.1007/s10452-005-9000-8 CrossRefGoogle Scholar
  32. Kirk JTO (1980) Spectral absorption properties of natural waters: contribution of the soluble and particulate fractions to light absorption in some inland waters of south-eastern Australia. Aust J Mar Freshw Res 31:287–296. doi: 10.1071/MF9800287 CrossRefGoogle Scholar
  33. Lovell CR, Konopka A (1985) Primary and bacterial production in two dimictic Indiana lakes. Appl Environ Microbiol 49:485–491PubMedGoogle Scholar
  34. MacIssac EA, Stockner JG (1993) Enumeration of phototrophic picoplankton by autofluorescence microscopy. In: Kemp PF, Sherr BF, Sherr EB, Cole JJ (eds) Handbook of methods in aquatic microbial ecology. Lewis, Boca Ratón, pp 187–197Google Scholar
  35. Modenutti BE, Pérez GL (2001) Planktonic ciliates from an oligotrophic South Andean lake, Morenito lake (Patagonia, Argentina). Rev Bras Biol 61:389–395Google Scholar
  36. Modenutti B, Balseiro EG, Queimaliños CP, Suárez DA, Diéguez MC, Albariño R (1998) Structure and dynamics of food webs in Andean lakes. Lakes Reserv Res Manag 3:179–186. doi: 10.1046/j.1440-1770.1998.00071.x CrossRefGoogle Scholar
  37. Moran MA, Covert JS (2003) Photochemically mediated linkages between dissolved organic matter and bacterioplankton. In: Findlay S, Sinsabaugh RL (eds) Aquatic ecosystems: interactivity of dissolved organic matter. Academic Press, pp 243–263Google Scholar
  38. Moran MA, Hodson RE (1990) Bacterial production on humic and nonhumic components of dissolved organic carbon. Limnol Oceanogr 35:1744–1756Google Scholar
  39. Morris DP, Hargreaves BR (1997) The role of photochemical degradation of dissolved organic carbon in regulating the UV transparency of three lakes on the Pocono plateau. Limnol Oceanogr 42:239–249Google Scholar
  40. Morris DP, Zagarese HE, Williamson CE, Balseiro EG, Hargreaves BR, Modenutti BE, Moeller R, Queimaliños CP (1995) The attenuation of UV radiation in lakes and the role of dissolved organic carbon. Limnol Oceanogr 40:1381–1391Google Scholar
  41. Neale PJ, Litchman E, Sobrino C, Callieri C, Morabito G, Montecino V, Huot Y, Bossard P, Lehmann C, Steiner D (2001) Quantifying the response of phytoplankton photosynthesis to ultraviolet radiation: biological weighting functions versus in situ measurements in two Swiss lakes. Aquat Sci 63:265–285. doi: 10.1007/PL00001354 CrossRefGoogle Scholar
  42. Nusch EA (1980) Comparison of different methods for chlorophyll and phaeopigment determination. Arch Hydrobiol Beih Ergebn Limnol 14:14–36Google Scholar
  43. Osburn CL, Morris DP, Thorn KA, Moeller RE (2001) Chemical and optical changes in freshwater dissolved organic matter exposed to solar radiation. Biogeochemistry 54:251–278. doi: 10.1023/A:1010657428418 CrossRefGoogle Scholar
  44. Paruelo JB, Beltrán A, Jobbágy E, Sala OE, Golluscio RA (1998) The climate of Patagonia: general patterns and controls on biotic processes. Ecol Aust 8:85–101Google Scholar
  45. Pedrozo F, Chillrud S, Temporetti P, Díaz M (1993) Chemical composition and nutrient limitation in rivers and lakes of northern Patagonian Andes (39.5°42′ S; 71°W) (Rep Argentina). Verh Internat Verein Limnol 25:207–214Google Scholar
  46. Pérez MT, Sommaruga R (2007) Interactive effects of solar radiation and dissolved organic matter on bacterial activity and community structure. Environ Microbiol 9:2200–2210. doi: 10.1111/j.1462-2920.2007.01334.x CrossRefPubMedGoogle Scholar
  47. Pérez GL, Queimaliños CP, Modenutti BE (2002) Light climate and plankton in the deep chlorophyll maxima in North Patagonian Andean lakes. J Plankton Res 24:591–599. doi: 10.1093/plankt/24.6.591 CrossRefGoogle Scholar
  48. Pick FR (1991) The abundance and composition of freshwater picocyanobacteria in relation to light penetration. Limnol Oceanogr 36:1457–1462Google Scholar
  49. Pick FR, Agbeti DM (1991) The seasonal dynamic and composition of photosynthetic picoplankton communities in temperate lakes in Ontario, Canada. Int Rev Ges Hydrobiol 76:565–580. doi: 10.1002/iroh.19910760409 CrossRefGoogle Scholar
  50. Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948CrossRefGoogle Scholar
  51. Simon M, Azam K (1989) Protein content and protein synthesis rates of planktonic marine bacteria. Mar Ecol Prog Ser 51:201–213. doi: 10.3354/meps051201 CrossRefGoogle Scholar
  52. Steeman-Nielsen E (1951) Measurement of the production of organic matter in the sea by means of carbon-14. Nature 167:684–685. doi: 10.1038/167684b0 CrossRefGoogle Scholar
  53. Steeman-Nielsen E (1952) The use of radioactive carbon (14C) for measuring organic production in the sea. J Cons Int Explor Mer 18:117–140Google Scholar
  54. Stockner JG (1991) Autotrophic picoplankton in freshwater ecosystems: the view from the summit. Int Rev Ges Hydrobiol 76:483–492. doi: 10.1002/iroh.19910760402 CrossRefGoogle Scholar
  55. Stomp M, Huisman J, Vörös L, Pick JR, Laamanen M, Haverkamp T, Stal L (2007) Colourful coexistence of red and green picocyanobacteria in lakes and seas. Ecol Lett 10:290–298. doi: 10.1111/j.1461-0248.2007.01026.x CrossRefPubMedGoogle Scholar
  56. Uehlinger U, Bloesch J (1989) Primary production of different phytoplankton size classes in an oligo-mesotrophic Swiss lake. Arch Hydrobiol 116:1–21Google Scholar
  57. Voros L, Callieri C, Balogh KV, Bertoni R (1998) Freshwater picocyanobacteria along a trophic gradient and light quality range. Hydrobiologia 370:117–125. doi: 10.1023/A:1017026700003 CrossRefGoogle Scholar
  58. Wetzel RG (2001) Limnology lake and river ecosystems. Academic Press, LondonGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Marcela Bastidas Navarro
    • 1
    Email author
  • Beatriz Modenutti
    • 1
  • Cristiana Callieri
    • 2
  • Roberto Bertoni
    • 2
  • Esteban Balseiro
    • 1
  1. 1.Laboratorio de LimnologíaINIBIOMA (UNC-CONICET)BarilocheArgentina
  2. 2.Institute of Ecosystem StudyCNRVerbania PallanzaItaly

Personalised recommendations