Aquatic Ecology

, 43:1193 | Cite as

Predation of the shelduck Tadorna tadorna on the mud snail Hydrobia ulvae



Many waders and ducks rely exclusively on invertebrates for their food and can deplete populations of these invertebrates. The mudsnail Hydrobia ulvae and the shelduck Tadorna tadorna are both widespread and abundant and in previous studies H. ulvae has been identified as the main food source for shelduck. The objective of the study was to quantify the predation of shelduck of H. ulvae on an intertidal mud flat in north Wales in order to estimate the contribution of shelduck predation to H. ulvae mortality and to estimate the importance of H. ulvae in the diet of shelduck. The contribution of shelduck towards the observed mortality was estimated from the number of H. ulvae per dropping, the number of droppings produced per hour and the number of shelduck found at the study site. Shelduck predation hardly made a contribution to the observed mortality of H. ulvae. Examination of the energetic requirements of shelduck shows that H. ulvae cannot be a significant part of the diet. In conclusion, the predation of shelduck on H. ulvae was irrelevant for both the population dynamics of the mud snail and for the energy requirements of shelduck in the study area.


Shelduck Hydrobia ulvae Predation Faecal analysis Feeding behaviour Traeth Melynog 


  1. Bachelet G, Yacine-Kassab M (1987) Intégration de la phase post-recrutée dans la dynamique des populations du gastéropode intertidal Hydrobia ulvae (Pennant). J Exp Mar Biol Ecol 111:37–60. doi:10.1016/0022-0981(87)90019-0 CrossRefGoogle Scholar
  2. Berry AJ (1988) Annual cycle in Retusa obtusa (Montagu) (Gastropoda, Ophisthobranchia) of reproduction, growth and predation upon Hydrobia ulvae (Pennant). J Exp Mar Biol Ecol 117:197–209. doi:10.1016/0022-0981(88)90057-3 CrossRefGoogle Scholar
  3. Cadée GC (1988) Levende wadslakjes in bergeend faeces. Corr Blad Malac 243:443–444Google Scholar
  4. Cadée GC (1994) Eider, shelduck, and other predators, the main producers of shell fragments in the Wadden Sea: palaeoecological implications. Palaeontology 37:181–202Google Scholar
  5. Campbell JW (1947) The food of some British Wildfowl. Ibis 89:429–432. doi:10.1111/j.1474-919X.1947.tb04360.x CrossRefGoogle Scholar
  6. Collier MP, Banks AN, Austin GE, Girling T, Hearn RD, Musgrove AJ (2005) The Wetland Bird Survey 2003/2004: Wildfowl and Wader counts, BTO/WWT/RSPB/JNCC, ThetfordGoogle Scholar
  7. Dekinga A, Piersma T (1993) Reconstructing diet composition on the basis of faeces in a mollusc-eating wader, the knot Calidris canutus. Bird Study 40:144–156CrossRefGoogle Scholar
  8. Evans PR, Pienkowski MW (1982) Behaviour of shelducks Tadorna tadorna in a winter flock: does regulation occur? J Anim Ecol 51:241–262. doi:10.2307/4323 CrossRefGoogle Scholar
  9. Evans PR, Herdson DM, Knights PJ, Pienkowski MW (1979) Short-term effects of reclamation of part of Seal Sands, Teesmouth, on wintering waders and Shelduck. Oecologia 41:183–206. doi:10.1007/BF00345002 CrossRefGoogle Scholar
  10. Guillemain M, Fritz H, Duncan P (2002) The importance of protected areas as nocturnal feeding grounds for dabbling ducks wintering in western France. Biol Conserv 103:183–198. doi:10.1016/S0006-3207(01)00120-3 CrossRefGoogle Scholar
  11. Hayward PJ, Ryland JS (1996) Handbook of the marine fauna of North-West Europe. Oxford University Press, OxfordGoogle Scholar
  12. Hiddink JG (2003) Modelling the adaptive value of intertidal migration and nursery use in the bivalve Macoma balthica. Mar Ecol Prog Ser 252:173–185. doi:10.3354/meps252173 CrossRefGoogle Scholar
  13. Holme NA, McIntyre AD (1984) Methods for the study of marine benthos. Blackwell Scientific Publications, OxfordGoogle Scholar
  14. Jennings S, Kaiser MJ, Reynolds JD (2001) Marine fisheries ecology. Blackwell Publishing, OxfordGoogle Scholar
  15. Jensen KT, Mouritsen KN (1992) Mass mortality in two common soft-bottom invertebrates, Hydrobia ulvae and Corophium volutator—the possible role of trematodes. Helgol Meersunters 46:329–339. doi:10.1007/BF02367103 CrossRefGoogle Scholar
  16. Mendonça VM, Raffaelli DG, Boyle PR (2007) Interactions between shorebirds and benthic invertebrates at Culbin sands lagoon, NE Scotland: Effects of avian predation on their prey community density and structure. Sci Mar 71:579–591CrossRefGoogle Scholar
  17. Mitchell DW, Grubaugh JW (2005) Impacts of shore birds on macroinvertebrates in the lower Mississippi Alluvial Valley. Am Midl Nat 154:188–200. doi:10.1674/0003-0031(2005)154[0188:IOSOMI]2.0.CO;2 CrossRefGoogle Scholar
  18. Olney PJS (1965) Food and feeding habits of the shelduck Tadorna tadorna. Ibis 107:527–532. doi:10.1111/j.1474-919X.1965.tb07335.x CrossRefGoogle Scholar
  19. Piersma T, Hoekstra R, Dekinga A, Koolhaas A, Wolf P, Battley P, Wiersma P (1993) Scale and intensity of intertidal habitat use by knots Calidris canutus in the western Wadden sea in relation to food, friends and foes. Neth J Sea Res 31:331–357. doi:10.1016/0077-7579(93)90052-T CrossRefGoogle Scholar
  20. Snow D, Perrins C (1998) The Birds of the Western Palearctic, Concise Edition. Oxford University Press, New YorkGoogle Scholar
  21. Sola JC (1996) Population dynamics, reproduction, growth, and secondary production of the mud-snail Hydrobia ulvae (Pennant). J Exp Mar Biol Ecol 205:49–62. doi:10.1016/S0022-0981(96)02597-X CrossRefGoogle Scholar
  22. Sutherland WJ (1982) Spatial variation in the predation of cockles by oystercatchers at Traeth Melynog, Anglesey. II. The pattern of mortality. J Anim Ecol 51:491–500. doi:10.2307/3979 CrossRefGoogle Scholar
  23. Van Gils JA, De Rooij SR, Van Belle J, Van Der Meer J, Dekinga T, Drent R (2005) Digestive bottleneck affects foraging decisions in red knots Calidris canutus. I. Prey choice. J Anim Ecol 74:105–119. doi:10.1111/j.1365-2656.2004.00903.x CrossRefGoogle Scholar
  24. Young CM (1970) Territoriality in the common shelduck Tadorna tadorna. Ibis 112:330–335. doi:10.1111/j.1474-919X.1970.tb00110.x CrossRefGoogle Scholar
  25. Zwarts L, Blomert AM (1992) Why knot Calidris canutus take medium-sized Macoma balthica when six prey species are available. Mar Ecol Prog Ser 83:113–128. doi:10.3354/meps083113 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.School of Ocean Sciences, College of Natural SciencesBangor UniversityMenai BridgeUK

Personalised recommendations