Advertisement

Aquatic Ecology

, Volume 43, Issue 2, pp 235–248 | Cite as

Life at the extreme: meiofauna from three unexplored lakes in the caldera of the Cerro Azul volcano, Galápagos Islands, Ecuador

  • Daniel MuschiolEmail author
  • Walter Traunspurger
Article

Abstract

On Isla Isabela, Galápagos Archipelago, three so far unexplored lakes were investigated in the caldera of Cerro Azul, one of the most active volcanoes in the world. The lakes face recurrent desiccation and eruption events and showed distinct differences in their water chemistry. Thirty cores from the upper 15 cm of sediment indicate distinct differences in the composition of meiobenthic communities between the lakes. In total, 27 different aquatic metazoan species could be distinguished. Numerically, rotifers dominated in two of the lakes, with mean densities up to 4.56 × 106 individuals m−2 while the third lake was dominated by a gastrotrich of the genus Chaetonotus (0.67 × 106 individuals m−2). The largest lake harboured up to 14.4 × 106 nematodes m−2, which is the highest nematode density thus far reported for a freshwater habitat. The lakes yielded few nematode species (S = 7, N = 887) and calculation of the Shannon–Wiener index (H′) indicated an exceptionally low nematode diversity. The nematode community of one lake was clearly dominated by an undescribed suction-feeding Mesodorylaimus (59.6%), the community of the other lake by the epistrate feeder Achromadora pseudomicoletzkyi (89.3%), whereas the third lake surprisingly contained no nematodes. The benthic nematode biomasses for the two nematode-containing lakes differed by a factor 50. The food webs of the three lakes are presumed to have an exceptionable simply structure.

Keywords

Abundance Biomass Meiobenthos Nematodes Species diversity Volcanic lakes 

Notes

Acknowledgements

Work in the field was accomplished with the kind permission of the Galápagos National Park. Preparation for the collecting trip and the later work in the laboratory were kindly supported by the CDRS, with special thanks to Ana Mireya Guerrero, Jorge Luis Rentería and Dr. Alan Tye. Many thanks to the wonderful Galápagos crew, especially Thomas Bartolomaeus. The following persons kindly helped with the taxonomic determination of the various meiobenthic groups: Anton Brancelj (Cladocera), Ralf Deichsel (Acari), Anno Faubel (Platyhelminthes), Diana Galassi (Copepoda), Reinhard Gerecke (Acari), Alexander Kieneke (Gastrotricha), Peter Martin (Acari), Claude Meisch (Ostracoda), Nicola Reiff (Diptera), Helmut Rogg (Coleoptera, Heteroptera and Odonata), Heinrich Schatz (Acari), Tarmo Timm (Annelida) and Aldo Zullini (Nematoda). Lars Peters, Jenny M. Schmidt-Araya and three anonymous reviewers made valuable comments on earlier versions of the manuscript.

References

  1. Andrássy I (1956) Die Rauminhalts- und Gewichtsbestimmung der Fadenwürmer (Nematoda). Acta Zool Hung 2:1–15Google Scholar
  2. Balsamo M, Todaro MA (2002) Gastrotricha. In: Rundle SD, Robertson A, Schmid-Araya JM (eds) Freshwater meiofauna: biology and ecology. Backhuys Publishers, Leiden, pp 45–61Google Scholar
  3. Banfield AF, Behre C, Clair D (1956) Geology of Isabela (Albemarle) Island, Archipelago de Colón (Galápagos). Geol Soc Am Bull 67:215–234. doi: 10.1130/0016-7606(1956)68[215:GOIAIA]2.0.CO;2 CrossRefGoogle Scholar
  4. Beier S, Bolley M, Traunspurger W (2004) Predator-prey interactions between Dugesia gonocephala and free-living nematodes. Freshw Biol 49(1):77–86. doi: 10.1046/j.1365-2426.2003.01168.x CrossRefGoogle Scholar
  5. Clarke KR, Green RH (1988) Statistical design and analysis for a “biological effects” study. Mar Ecol Prog Ser 46:213–226. doi: 10.3354/meps046213 CrossRefGoogle Scholar
  6. Clarke KR, Warwick RM (2001) Changes in marine communities: an approach to statistical analysis and interpretation. PRIMER-E, PlymouthGoogle Scholar
  7. Colinvaux PA (1968a) Paleolimnological investigations in the Galápagos Archipelago. Not Galapagos 11:13–18Google Scholar
  8. Colinvaux PA (1968b) Reconnaissance and chemistry of the lakes and bogs of the Galápagos Islands. Nature 219:590–594. doi: 10.1038/219590a0 CrossRefGoogle Scholar
  9. Colinvaux PA (1984) The Galápagos climate: present and past. In: Perry R (ed) Galapagos. Pergamon Press, Oxford, pp 55–69Google Scholar
  10. Colinvaux PA, Schofield EK (1976a) Historical ecology in the Galápagos Islands. I. A holocene pollen record from El Junco Lake, Isla San Cristobal. J Ecol 64:989–1012. doi: 10.2307/2258820 CrossRefGoogle Scholar
  11. Colinvaux PA, Schofield EK (1976b) Historical ecology in the Galapagos Islands. II. A holocene spore record from El Junco Lake, Isla San Cristobal. J Ecol 64:1013–1028. doi: 10.2307/2258821 CrossRefGoogle Scholar
  12. Derycke S, Remerie T, Vierstraete A et al (2005) Mitochondrial DNA variation and cryptic speciation within the free-living marine nematode Pellioditis marina. Mar Ecol Prog Ser 300:91–103. doi: 10.3354/meps300091 CrossRefGoogle Scholar
  13. Eyualem A, Coomans A (1995) Freshwater nematodes of the Galápagos. Hydrobiologia 299(1):1–51. doi: 10.1007/BF00016885 CrossRefGoogle Scholar
  14. Fenchel T, Finlay BJ (2004) The ubiquity of small species: patterns of local and global diversity. Bioscience 54(8):777–784. doi: 10.1641/0006-3568(2004)054[0777:TUOSSP]2.0.CO;2 CrossRefGoogle Scholar
  15. Ferrington LC, Pehofer HE (1996) In star distribution and biomass of Chironomidae larvae in Lago El Junco, Isla San Cristobal, the Galápagos. Hydrobiologia 318(1/2):123–133. doi: 10.1007/BF00014138 CrossRefGoogle Scholar
  16. Gerecke R, Peck SB, Pehofer HE (1995) The invertebrate fauna of the inland waters of the Galápagos Archipelago (Ecuador)—a limnological and zoogeographical summary. Arch Hydrobiol Suppl 107(2):101–135Google Scholar
  17. Hakenkamp CC, Morin A, Strayer DL (2002) The functional importance of freshwater meiofauna. In: Rundle SD, Robertson A, Schmid-Araya JM (eds) Freshwater meiofauna: biology and ecology. Backhuys Publishers, Leiden, pp 321–335Google Scholar
  18. Heip C, Vincx M, Vranken G (1985) The ecology of marine nematodes. Oceanogr Mar Biol 23:399–489Google Scholar
  19. Holopainen IJ, Paasivirta L (1977) Abundance and biomass of the meiozoobenthos in the oligotrophic and mesotrophic Lake Pääjyarvi, southern Finnland. Ann Zool Fenn 14:124–134Google Scholar
  20. Ilow S, Weber D (1974) Fens and bogs in the Galápagos Islands. Hikobia 7:39–52Google Scholar
  21. Jackson MH (1991) Galapagos: a natural history guide. University of Calgary Press, CalgaryGoogle Scholar
  22. Jacobs LJ (1984) The free-living inland aquatic nematodes of Africa: A review. Hydrobiologia 113:259–291. doi: 10.1007/BF00026614 CrossRefGoogle Scholar
  23. Krebs CJ (1994) Ecology: the experimental analysis of distribution and abundance. HarperCollins College Publishers, New YorkGoogle Scholar
  24. Kung SP, Gaugler R, Kaya HK (1990) Influence of soil pH and oxygen on persistence of Steinernema spp. J Nematol 22(4):440–445PubMedGoogle Scholar
  25. Loof PAA (1999) Nematoda: Adenophorea (Dorylaimida). Spektrum Akad. Verl., HeidelbergGoogle Scholar
  26. MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, PrincetonGoogle Scholar
  27. McBirney AR, Williams H (1969) Geology and petrology of the Galápagos Islands. The Geological Society of America, BoulderGoogle Scholar
  28. Michiels I, Traunspurger W (2004) A three year study of seasonal dynamics of a zoobenthos community in a eutrophic lake. Nematology 6(5):655–669. doi: 10.1163/1568541042843568 CrossRefGoogle Scholar
  29. Michiels I, Traunspurger W (2005) Benthic community patterns and the composition of feeding types and reproductive modes in freshwater nematodes. Nematology 7(1):21–36. doi: 10.1163/1568541054192234 CrossRefGoogle Scholar
  30. Morgan GT, MacLean AA (1968) Influence of soil pH on an introduced population of Pratylenchus penetrans. Nematologica 14(2):311CrossRefGoogle Scholar
  31. Mouginis-Mark PJ, Snell H, Ellisor R (2000) GOES satellite and field observations of the 1998 eruption of Volcan Cerro Azul, Galapagos Islands. Bull Volc 62(3):188–198. doi: 10.1007/s004450000078 CrossRefGoogle Scholar
  32. Munro DC, Rowland SK (1996) Caldera morphology in the western Galápagos and implications for volcano eruptive behavior and mechanisms of caldera formation. J Volcanol Geotherm Res 72:85–100. doi: 10.1016/0377-0273(95)00076-3 CrossRefGoogle Scholar
  33. Muschiol D, Traunspurger W (2007) Life cycle and calculation of the intrinsic rate of natural increase of two bacterivorous nematodes, Panagrolaimus sp. and Poikilolaimus sp. from chemoautotrophic Movile Cave, Romania. Nematology 9(2):271–284. doi: 10.1163/156854107780739117 CrossRefGoogle Scholar
  34. Naumann T, Geist D (2000) Physical volcanology and structural development of Cerro Azul Volcano, Isabela Island, Galapagos: Implications for the development of Galapagos-type shield volcanoes. Bull Volc 61:497–514Google Scholar
  35. Naumann T, Geist D, Kurz M (2002) Petrology and geochemistry of Volcan Cerro Azul: Petrologic diversity among the western Galapagos volcanoes. J Petrol 43(5):859–884. doi: 10.1093/petrology/43.5.859 CrossRefGoogle Scholar
  36. Nesteruk T (1996) Density and biomass of Gastrotricha in sediments of different types of standing waters. Hydrobiologia 324(3):205–208Google Scholar
  37. Overgaard Nielsen C (1949) Studies on soil microfauna, II. The soil inhabiting nematodes. Nat Jutl 2:1–131Google Scholar
  38. Peck SB (1991) The Galapagos Archipelago, Ecuador: with an emphasis on terrestrial invertebrates, especially insects; and an outline for research. In: Dudley EC (ed) The unity of evolutionary biology. Dioscorides Press, Portland, pp 319–336Google Scholar
  39. Peck SB (1992) The dragonflies and damselflies of the Galápagos Islands, Ecuador. Psyche (Stuttg) 99:309–321Google Scholar
  40. Peck SB (1994) Diversity and zoogeography of the non-oceanic Crustacea of the Galápagos Islands, Ecuador (excluding terrestrial Isopoda). Can J Zool 72:54–69CrossRefGoogle Scholar
  41. Peck SB (2001) Smaller orders of insects of the Galápagos Islands, Ecuador: evolution, ecology, and diversity. National Research Council of Canada Research Press, OttawaGoogle Scholar
  42. Peck SB, Balke M (1993) A synopsis of the Dytiscidae of the Galapagos Islands, Ecuador, with description of Rhantus galapagoensis sp. nov. (Coleoptera: Dytiscidae). Can Entomol 125(2):259–266CrossRefGoogle Scholar
  43. Peters L, Traunspurger W (2005) Species distribution of free-living nematodes and other meiofauna in littoral periphyton communities of lakes. Nematology 7(2):267–280. doi: 10.1163/1568541054879520 CrossRefGoogle Scholar
  44. Pfannkuche O, Thiel H (1988) Sample processing. In: Higgins RP, Thiel H (eds) Introduction to the study of meiofauna. Smithsonian Institution Press, Washington, DC, pp 134–145Google Scholar
  45. Prejs K (1977) The nematodes of the root region of aquatic macrophytes, with special consideration of nematode groupings penetrating the tissues of roots and rhizomes. Ekol Polska 25(1):5–20Google Scholar
  46. Robertson AL (2002) Changing times: the temporal dynamics of freshwater benthic microcrustacea. In: Rundle SD, Robertson A, Schmid-Araya JM (eds) Freshwater meiofauna: biology and ecology. Backhuys Publishers, Leiden, pp 261–278Google Scholar
  47. Rowland SK, Harris AJ, Wooster MJ et al (2003) Volumetric characteristics of lava flows from interferometric radar and multispectral satellite data: The 1995 Fernandina and 1998 Cerro Azul eruptions in the western Galapagos. Bull Volc 65(5):311–330. doi: 10.1007/s00445-002-0262-x CrossRefGoogle Scholar
  48. Rudnick DT, Elmgren R, Frithsen JB (1985) Meiofaunal prominence and benthic seasonality in a coastal marine ecosystem. Oecologia 67(2):157–168. doi: 10.1007/BF00384279 CrossRefGoogle Scholar
  49. Rundle SD, Bilton DT, Galassi D et al (2002) The geographical ecology of freshwater meiofauna. In: Rundle SD, Robertson A, Schmid-Araya JM (eds) Freshwater meiofauna: biology and ecology. Backhuys Publishers, Leiden, pp 279–294Google Scholar
  50. Russell CC (1986) The feeding habits of a species of Mesodorylaimus. J Nematol 18(4):641Google Scholar
  51. Schatz H (1998) Oribatid mites of the Galapagos Islands – faunistics, ecology and speciation. Exp Appl Acarol 22(7):373–409. doi: 10.1023/A:1006097928124 CrossRefGoogle Scholar
  52. Schmid PE, Schmid-Araya JM (2002) Trophic relationships in temporary and permanent freshwater meiofauna. In: Rundle SD, Robertson A, Schmid-Araya JM (eds) Freshwater meiofauna: biology and ecology. Backhuys Publishers, Leiden, pp 295–319Google Scholar
  53. Schmid-Araya JM (1998) Rotifers in interstitial sediments. Hydrobiologia 387–388:231–240. doi: 10.1023/A:1017033525199 CrossRefGoogle Scholar
  54. Seinhorst JW (1962) On the killing, fixation and transferring to glycerin of nematodes. Nematologica 8:29–32Google Scholar
  55. Strayer D (1985) The benthic micrometazoans of Mirror Lake, New Hampshire. Arch Hydrobiol Suppl 72:287–426Google Scholar
  56. Strayer D, Likens GE (1986) An energy budget for the zoobenthos of Mirror Lake, New Hampshire. Ecology 67(2):303–313. doi: 10.2307/1938574 CrossRefGoogle Scholar
  57. Traunspurger W (1997) Bathymetric, seasonal and vertical distribution of the feeding-types of nematodes in an oligotrophic lake. Vie Milieu 47(1):1–7Google Scholar
  58. Traunspurger W (2002) Nematoda. In: Rundle SD, Robertson A, Schmid-Araya JM (eds) Freshwater meiofauna: biology and ecology. Backhuys Publishers, Leiden, pp 63–104Google Scholar
  59. Traunspurger W, Michiels I, Eyualem A (2006) Composition and distribution of free-living freshwater nematodes: Global and local perspectives. In: Eyualem A, Traunspurger W, Andrássy I (eds) Freshwater nematodes: ecology and taxonomy. CABI Publishing, Oxfordshire, pp 46–76Google Scholar
  60. Underwood AJ (1997) Experiments in ecology. Cambridge University Press, CambridgeGoogle Scholar
  61. Wallace RL, Ricci C (2002) Rotifera. In: Rundle SD, Robertson A, Schmid-Araya JM (eds) Freshwater meiofauna: biology and ecology. Backhuys Publishers, Leiden, pp 15–44Google Scholar
  62. Warwick RM, Price R (1979) Ecological and metabolic studies from free-living nematodes from an estuarine mud-flat. Estuar Coast Mar Sci 9:257–271. doi: 10.1016/0302-3524(79)90039-2 CrossRefGoogle Scholar
  63. Yeates GW, Bongers T (1999) Nematode diversity in agroecosystems. Agric Ecosyst Environ 74(1–3):113–135. doi: 10.1016/S0167-8809(99)00033-X CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Animal EcologyUniversity BielefeldBielefeldGermany

Personalised recommendations