Aquatic Ecology

, Volume 42, Issue 2, pp 237–251 | Cite as

Classifying aquatic macrophytes as indicators of eutrophication in European lakes

  • W. Ellis Penning
  • Marit Mjelde
  • Bernard Dudley
  • Seppo Hellsten
  • Jenica Hanganu
  • Agnieszka Kolada
  • Marcel van den Berg
  • Sandra Poikane
  • Geoff Phillips
  • Nigel Willby
  • Frauke Ecke


Aquatic macrophytes are one of the biological quality elements in the Water Framework Directive (WFD) for which status assessments must be defined. We tested two methods to classify macrophyte species and their response to eutrophication pressure: one based on percentiles of occurrence along a phosphorous gradient and another based on trophic ranking of species using Canonical Correspondence Analyses in the ranking procedure. The methods were tested at Europe-wide, regional and national scale as well as by alkalinity category, using 1,147 lakes from 12 European states. The grouping of species as sensitive, tolerant or indifferent to eutrophication was evaluated for some taxa, such as the sensitive Chara spp. and the large isoetids, by analysing the (non-linear) response curve along a phosphorous gradient. These thresholds revealed in these response curves can be used to set boundaries among different ecological status classes. In total 48 taxa out of 114 taxa were classified identically regardless of dataset or classification method. These taxa can be considered the most consistent and reliable indicators of sensitivity or tolerance to eutrophication at European scale. Although the general response of well known indicator species seems to hold, there are many species that were evaluated differently according to the database selection and classification methods. This hampers a Europe-wide comparison of classified species lists as used for the status assessment within the WFD implementation process.


Aquatic vegetation Indicators Species classification REBECCA EU Water Framework Directive 


  1. Barko JW, Adams MS, Clesceri NL (1986) Environmental factors and their consideration in the management of submersed aquatic vegetation—a review. J Aquat Plan Manag 24:1–10Google Scholar
  2. Birk S, Korte T, Hering D (2006) Intercalibration of assessment methods for macrophytes in lowland streams: direct comparison and analysis of common metrics. Hydrobiologia 566:417–430CrossRefGoogle Scholar
  3. CEN (2006) Water quality—guidance standard for the surveying of macrophytes in lakes. prEn 15460Google Scholar
  4. Coops H, Kerkum FCM, van den Berg MS, van Splunder I (2007) Submerged macrophyte vegetation and the European Water Framework Directive: assessment of status and trends in shallow, alkaline lakes in the Netherlands. Hydrobiologia 584:395–402CrossRefGoogle Scholar
  5. Covaliov S, van Geest G, Hanganu J, Hulea O, Torok L, Coops H (2003) Seasonality of macrophyte dominance in flood-pulsed lakes of the Danube Delta. Hydrobiologia 506(1–3):651–656Google Scholar
  6. Ecke F (2006) Kompletterande utredningar för revideringen av bedömningsgrunder för makrofyter i sjöar. Report, Institutionen för tillämpad kemi och geovetenskap, Luleå tekniska universitet, 28 ppGoogle Scholar
  7. Free G, Little R, Tierney D, Donnelly K, Caroni R (2006) A reference based typology and ecological assessment system for Irish lakes-preliminary investigations. Environmental Protection Agency, Wexford.
  8. Gibson CE, Foy RH, Bailey-Watts AE (1996) An analysis of the total phosphorus cycle in some temperate lakes: the response to enrichment. Freshw Biol 35(3):525–532Google Scholar
  9. Heiskanen AS, Van der Bund WJ, Cardoso AC, Noges P (2004) Towards good ecological status of surface waters in Europe—interpretation and harmonisation of the concept. Water Sci Technol 49(7):169–177PubMedGoogle Scholar
  10. Hill MO, Ellenberg H (1999) Ellenberg’s indicator values for British plants: technical annex. ECOFACT research report S. Stationery Office Books. ISBN: 1870393481Google Scholar
  11. James FJ, Barko JW, Butler MG (2004) Shear stress and sediment resuspension in relation to macrophyte biomass. Hydrobiologia 515:181–191CrossRefGoogle Scholar
  12. Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems, 2nd edn. Cambridge University Press, 509 ppGoogle Scholar
  13. Kurimo U (1970) Effect of pollution on the aquatic macroflora of the Varkaus area, Finnish Lake District. Ann Bot Fenn 7:213–254Google Scholar
  14. Lamers LPM, Smolders AJP, Roelofs JGM (2002) The restoration of fens in the Netherlands. In: Nienhuis PH, Gulati R (eds) The ecological restoration of wetlands in the Netherlands. Kluwer, Amsterdam. Also in Hydrobiologia 478:107–130Google Scholar
  15. Leka J, Toivonen H, Leikola N, Hellsten S (2007) Makrofyytit Suomen järvien ekologisen tilan ilmentäjinä. Valtakunnallisen makrofyyttiaineiston käyttö ekologisen tila-luokittelun kehittämisessä. Suomen ympäristö, 42 p. + appGoogle Scholar
  16. Leyssen A, Adriaens P, Denys L, Packet J, Schneiders A, Van Looy K, Vanhecke L (2005) Toepassing van verschillende biologische beoordelingssystemen op Vlaamse potentiele interkalibratielocaties overeenkomstig de Europese Kaderrichtlijn Water – Partim ‘Macrofyten’. Rapport van het Instituut voor Natuurbehoud IN.R. 2005.05 in opdracht van VMM, BrusselGoogle Scholar
  17. Lyche Solheim A (ed) (2005) Reference conditions of European lakes. Indicators and methods for the Water Framework Directive Assessment of Reference Conditions. REBECCA report D7.
  18. Lyche Solheim A (ed) (2006) Dose-response relationships between biological and chemical elements in different lake types. REBECCA report D11.
  19. Mäkirinta U (1978) Ein neues ökomorphologisches Lebensformen-System der aquatischen Makrophyten. Phytocoenologia 4:446–470Google Scholar
  20. Moe SJ, Dudley B, Ptacnik R (2008) REBECCA databases: experiences from compilation and analyses of monitoring data from 5,000 lakes in 20 European countries. Aquat Ecol. doi:10.1007/s10452-008-9190-y Google Scholar
  21. Mjelde M (2007) Macrophytes and eutrophication in lakes (unpublished)Google Scholar
  22. Moss B, Stephen D, Alvarezn C, Becares E, Van der Bund W, Collings SE et al (2003) The determination of ecological status in shallow lakes—a tested system (ECOFRAME) for implementation of the European Water Framework Directive. Aquatic Conserv Mar Freshw Ecosyst 13:507–549CrossRefGoogle Scholar
  23. Murphy KJ (2002) Plant communities and plant diversity in softwater lakes of Northern Europe. Aquat Bot 73(4):287–324CrossRefGoogle Scholar
  24. Murphy KJ, Rørslett B, Springuel I (1990) Strategy analysis of submerged lake macrophyte communities: an International example. Aquat Bot 36:303–323CrossRefGoogle Scholar
  25. Palmer MA, Bell SL, Butterfield I (1992) A botanical classification of standing waters in Britain: applications for conservation and monitoring. Aquatic Conserv Mar Freshw Ecosyst 2:125–143CrossRefGoogle Scholar
  26. Penning WE, Dudley B, Mjelde M, Hellsten S, Hanganu J, Kolada A, Van den Berg M, Poikane S, Phillips G, Willby N, Ecke F (2008) Using aquatic macrophyte community indices to define the ecological status of European lakes. Aquatic Ecol. doi:10.1007/s10452-008-9183-x Google Scholar
  27. Pot R (2003) Veldgids nr. 17: Veldgids Water- en oeverplanten, -352. KNNV Uitgeverij & STOWA, UtrechtGoogle Scholar
  28. Rørslett B (1991) Principal determinants of aquatic macrophyte richness in northern European lakes. Aquat Bot 39:173–193CrossRefGoogle Scholar
  29. Schaminee JHJ, Weeda EJ, Westhof V (1995) De vegetatie van Nederland. Deel 2. Plantengemeenschappen van wateren, moerassen en natte heiden. Opulus Press, Uppsala, LeidenGoogle Scholar
  30. Schaumburg J, Schranz C, Hofmann G, Stelzer D, Schneider S, Schmedtje U (2004) Macrophytes and phytobenthos as indicators of ecological status in German lakes—a contribution to the implementation of the Water Framework Directive. Limnologica 34:302–314CrossRefGoogle Scholar
  31. Søndergaard M, Jeppesen E, Peder JJ, Lildal SA (2005) Water Framework Directive: ecological classification of Danish lakes. J Appl Ecol 42(4):616–629CrossRefGoogle Scholar
  32. Stelzer D, Schneider S, Melzer A (2005) Macrophyte based assessment of lakes—a contribution to the implementation of the European Water Framework Directive in Germany. Int Rev Hydrobiol 90(2):223–237CrossRefGoogle Scholar
  33. Tόth LG, Poikane S, Penning WE, Free G, Mäemets H, Kolada A (2008) First steps of the central-baltic intercalibration exercise: from where do we start? Aquatic Ecol. doi:10.1007/s10452-008-9184-9 Google Scholar
  34. Van den Berg MS (2004) Achtergrondrapportage referenties en maatlatten waterflora. Rapportage van de expertgroepen macrofyten en fytoplankton. STOWA reportGoogle Scholar
  35. Van Geest G (2005) Macrophyte succession in floodplain lakes. Spatio-temporal patterns in relation to hydrology, lake morphology and management. Thesis, Wageningen University, The NetherlandsGoogle Scholar
  36. Willby N, Pitt J, Phillips G (2006) Summary of approach used in LEAFPACS for defining ecological quality of rivers and lakes using macrophyte composition. Draft Report January 2006Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • W. Ellis Penning
    • 1
    • 2
  • Marit Mjelde
    • 3
  • Bernard Dudley
    • 4
  • Seppo Hellsten
    • 5
  • Jenica Hanganu
    • 6
  • Agnieszka Kolada
    • 7
  • Marcel van den Berg
    • 8
  • Sandra Poikane
    • 9
  • Geoff Phillips
    • 10
  • Nigel Willby
    • 11
  • Frauke Ecke
    • 12
  1. 1.DeltaresDelftThe Netherlands
  2. 2.NIOO-Centre for Limnology, Publication 4296 NIOO-KNAWMaarssenThe Netherlands
  3. 3.NIVAOsloNorway
  4. 4.CEH, EdinburghPenicuikUK
  5. 5.SYKEUniversity of OuluOuluFinland
  6. 6.DDNITulceaRomania
  7. 7.Institute for Environmental ProtectionWarswawaPoland
  8. 8.Rijkswaterstaat RIZALelystadThe Netherlands
  9. 9.Joint Research CentreIspraItaly
  10. 10.Environment Agency for England and WalesReadingUK
  11. 11.University of StirlingStirlingUK
  12. 12.Luleå University of TechnologyLuleåSweden

Personalised recommendations