Aquatic Ecology

, Volume 43, Issue 1, pp 91–103 | Cite as

Refuge availability and sequence of predators determine the seasonal succession of crustacean zooplankton in a clay-turbid lake

  • Jukka Horppila
  • Pertti Eloranta
  • Anne Liljendahl-Nurminen
  • Juha Niemistö
  • Zeynep Pekcan-Hekim


The contribution of predators and abiotic factors to the regulation of the biomass and seasonal succession of crustacean zooplankton was studied in Lake Rehtijärvi (southern Finland). Field data in combination with bioenergetics modeling indicated that invertebrate planktivory by Chaoborus depressed cladoceran populations during early summer. In particular, bosminids that generally form the spring biomass peak of cladocerans in stratified temperate lakes did not appear in the samples until July. In July, predation pressure by chaoborids was relaxed due to their emergence period and cladoceran population growth appeared to be limited by predation by planktivorous fish. The effect of fish predation was amplified by reduced refuge availability for cladocerans. The concentration of dissolved oxygen below the epilimnion was depleted, forcing cladocerans to move upward to less turbid and thus more dangerous water layers. The effect of size selective predation by fish resulted in reduced mean size of cladocerans during the period when refuge thickness (thickness of the water layer with oxygen concentration <1 mg l−1 and water turbidity >30 NTU) was lowest. The results confirmed that in clay-turbid lakes, invertebrate predators could be the main regulators of herbivorous zooplankton even when cyprinid fish are abundant.


Zooplankton Invertebrate predators Planktivorous fish Dissolved oxygen Refuge 



The study was financially supported by the Academy of Finland (project 211156) and by the municipality of Jokioinen. Tuuli Ojala helped in the fieldwork and Tommi Malinen with the funding arrangements.


  1. Alajärvi E, Horppila J (2004) Diel variations in the vertical distribution of crustacean zooplankton and food selection by planktivorous fish in a shallow turbid lake. Int Rev Hydrobiol 89:238–249CrossRefGoogle Scholar
  2. Benndorf J (1995) Possibilities and limits for controlling eutrophication by biomanipulation. Int Rev Ges Hydrobiol 80:519–534CrossRefGoogle Scholar
  3. Borkent A (1981) The distribution and habitat preferences of the Chaoboridae (Culicomorpha: Diptera) of the holarctic region. Can J Zool 59:122–133CrossRefGoogle Scholar
  4. Branstrator DK, Lehman JT (1991) Invertebrate predation in Lake Michigan: regulation of Bosmina longirostris by Leptodora kindti. Limnol Oceanogr 36:483–495Google Scholar
  5. Cressa C, Lewis WM Jr (1986) Ecological energetics of Chaoborus in a tropical lake. Oecologia 70:326–331CrossRefGoogle Scholar
  6. Dodson S (1990) Predicting diel vertical migration of zooplankton. Limnol Oceanogr 35:1195–1200Google Scholar
  7. Eiane K, Aksnes DL, Giske J (1997) The significance of optical properties in competition among visual and tactile planktivores: a theoretical study. Ecol Modell 98:123–136CrossRefGoogle Scholar
  8. Elser MM, von Ende CN, Soranno P, Carpenter SR (1987) Chaoborus populations: response to food web manipulations and potential effects on zooplankton communities. Can J Zool 65:2846–2852CrossRefGoogle Scholar
  9. Ghilarov AM (1985) Dynamics and structure of cladoceran populations under conditions of food limitation. Ergebn Limnol 21:323–332Google Scholar
  10. Gliwicz ZM (1977) Food size selection and seasonal succession of filter feeding zooplankton in a eutrophic lake. Ekol Pol 25:179–225Google Scholar
  11. Gliwicz ZM, Pijanowska J (1989) The role of predation in zooplankton succession. In: Sommer U (ed) Plankton ecology. Springer-Verlag, Berlin, pp 253–296Google Scholar
  12. Hall RJ, Likens GE (1981) Chemical flux in an acid-stressed stream. Nature 292:329–331CrossRefGoogle Scholar
  13. Hart RC (1988) Zooplankton feeding rates in relation to suspended sediment content: potential influences on community structure in a turbid reservoir. Freshw Biol 19:123–139CrossRefGoogle Scholar
  14. Herzig A (1995) Leptodora kindtii: efficient predator and preferred prey item in Neusiedler see, Austria. Hydrobiologia 307:273–282CrossRefGoogle Scholar
  15. Horppila J, Liljendahl-Nurminen A (2005) Clay–turbid interactions may not cascade—a reminder for lake managers. Restor Ecol 13:242–246CrossRefGoogle Scholar
  16. Horppila J, Niemistö J (2008) Horizontal and vertical variations in sedimentation and resuspension rates in a small stratifying lake—effects of internal seiches. Sedimentology (in press)Google Scholar
  17. Horppila J, Malinen T, Nurminen L, Tallberg P, Vinni M (2000a) A metalimnetic oxygen minimum indirectly contributing to the low biomass of cladocerans in Lake Hiidenvesi—a diurnal study on the refuge effect. Hydrobiologia 436:81–90CrossRefGoogle Scholar
  18. Horppila J, Ruuhijärvi J, Rask M, Karppinen C, Nyberg K, Olin M (2000b) Seasonal changes in the diets and relative abundance of perch and roach—a comparison between littoral and pelagial zones of a large lake. J Fish Biol 56:51–72CrossRefGoogle Scholar
  19. Horppila J, Liljendahl-Nurminen A, Malinen T, Salonen M, Tuomaala A, Uusitalo L, Vinni M (2003) Mysis relicta in a eutrophic lake—consequences of obligatory habitat shifts. Limnol Oceanogr 48:1214–1222CrossRefGoogle Scholar
  20. Horppila J, Liljendahl-Nurminen A, Malinen T (2004) Effects of clay turbidity and light on the predator–prey interaction between smelts and chaoborids. Can J Fish Aquat Sci 61:1862–1870CrossRefGoogle Scholar
  21. Karabin A (1974) Studies on the predatory role of the cladoceran Leptodora kindtii (Focke), in secondary production of two lakes with different trophy. Ekol Pol 22:295–310Google Scholar
  22. Kirk KL, Gilbert JJ (1990) Suspended clay and the population dynamics of planktonic rotifers and cladocerans. Ecology 71:1741–1755CrossRefGoogle Scholar
  23. Lair N, Ayadi H (1989) The seasonal succession of planktonic events in Lake Aydat, France. A comparison with the PEG model. Arch Hydrobiol 115:589–602Google Scholar
  24. Lampert W (1984) The measurement of respiration. In: Downing JA, Rigler FH (eds) A manual on methods for assessment of secondary productivity in fresh waters. Blackwell Scientific, Oxford, England, pp 413–468Google Scholar
  25. Lampert W, Sommer U (1997) Limnoecology—the ecology of lakes and streams. Oxford University Press, New York, Oxford, 382ppGoogle Scholar
  26. Lessmark O (1983) Competition between perch (Perca fluviatilis) and roach (Rutilus rutilus) in south Swedish lakes. Ph.D. thesis. Institute of Limnology, University of Lund, 172pGoogle Scholar
  27. Liljendahl-Nurminen A, Horppila J, Eloranta P, Malinen T, Uusitalo L (2002) The seasonal dynamics and distribution of Chaoborus flavicans in adjacent lake basins of different morphometry and degree of eutrophication. Freshw Biol 47:1283–1295CrossRefGoogle Scholar
  28. Liljendahl-Nurminen A, Horppila J, Malinen T, Eloranta P, Vinni M, Alajärvi E, Valtonen S (2003) The supremacy of invertebrate predators over fish—factors behind the unconventional seasonal dynamics of cladocerans in Lake Hiidenvesi. Arch Hydrobiol 158:75–96CrossRefGoogle Scholar
  29. Liljendahl-Nurminen A, Horppila J, Uusitalo L, Niemistö J (2008a) Spatial variability in the abundance of pelagic invertebrate predators in relation to depth and turbidity. Aquat Ecol 42:25–33CrossRefGoogle Scholar
  30. Liljendahl-Nurminen A, Horppila J, Lampert W (2008b) Physiological and visual refuges in a metalimnion: an experimental study of effects of clay–turbidity and an oxygen minimum on fish predation. Freshwater Biology 53:945–951CrossRefGoogle Scholar
  31. Luecke C (1986) A change in the pattern of vertical migration of Chaoborus flavicans after the introduction of trout. J Plankton Res 8:649–657CrossRefGoogle Scholar
  32. Lunte CC, Luecke C (1990) Trophic interactions of Leptodora in Lake Mendota. Limnol Oceanogr 35:1091–1100CrossRefGoogle Scholar
  33. Luokkanen E (1995) Vesikirppuyhteisön lajisto, biomassa ja tuotanto Vesijärven Enonselällä. Helsingin yliopiston Lahden tutkimus—ja koulutuskeskuksen raportteja ja selvityksiä 25:1–53 (in Finnish with English summary)Google Scholar
  34. Mehner T, Benndorf J, Kasprzak P, Koschel R (2002) Biomanipulation of lake ecosystems: successful applications and expanding complexity in the underlying science. Freshw Biol 47:2453–2465CrossRefGoogle Scholar
  35. Moeller H, Scholz U (1991) Avoidance of poor-oxygen zones by fish in the Elbe River. J Appl Ichtyol 7:176–182CrossRefGoogle Scholar
  36. Neill WE, Peacock A (1980) Breaking the bottleneck: interactions of invertebrate predators and nutrients in oligotrophic lakes. In: Kerfoot WC (ed) Evolution and ecology of zooplankton communities. University Press of New England, Hanover, NH, pp 715–724Google Scholar
  37. Pekcan-Hekim Z, Horppila J (2007) Feeding efficiency of white bream at different inorganic turbidities and light climates. J Fish Biol 70:474–482CrossRefGoogle Scholar
  38. Post JR, McQueen DJ (1987) The impact of planktivorous fish on the structure of a plankton community. Freshw Biol 17:79–89CrossRefGoogle Scholar
  39. Ramcharan CW, McQueen DJ, Pérez-Fuentetaja A, Yan ND, Demers E, Rusak J (2001) Analyses of lake food webs using individual-based models to estimate Chaoborus production and consumption. Arch Hydrobiol Spec Issues Advanc Limnol 56:101–126Google Scholar
  40. Sæther OA (1997) Diptera Chaoboridae, Phantom midges. In: Nilsson A (ed) Aquatic insects of North Europe 2. Apollo Books, Stenstrup, pp 149–161Google Scholar
  41. Sammalkorpi I, Keto J, Kairesalo T, Luokkanen E, Mäkelä M, Vääriskoski J, Lammi E (1995) Vesijärviprojekti 1987–1994: Ravintoketjukunnostus, tutkimus ja toimenpidekokeilut. Vesi- ja ympäristöhallituksen jukaisuja A218, 126pp (in Finnish)Google Scholar
  42. Sarvala J, Helminen H, Saarikari V, Salonen S, Vuorio K (1998) Relations between planktivorous fish abundance, zooplankton and phytoplankton in the three lakes of differing productivity. Hydrobiologia 363:81–95CrossRefGoogle Scholar
  43. SAS Institute Inc. (1989) SAS/STAT user’s guide, version 6, vol 2, 4th edn. SAS Institute Inc, Cary, NCGoogle Scholar
  44. Scheffer M (1998) Ecology of shallow lakes. Chapman & Hall, LondonGoogle Scholar
  45. Sebestyén O (1960) On the food niche of Leptodora kindtii Focke (Crustacea, Cladocera) in the open water area of Lake Balaton. Int Rev Ges Hydrobiol 45:277–282Google Scholar
  46. Shapiro J, Lamarra V, Lynch M (1975) Biomanipulation: an ecosystem approach to lake restoration. In: Brezonit PL, Fox JL (eds) Water quality management through biological control. Report No. ENV-07–75-1. University of Florida, Gainesville, pp 85–96Google Scholar
  47. Shuter BJ, Ing KK (1997) Factors affecting the prodcution of zooplankton in lakes. Can J Fish Aquat Sci 54:359–377CrossRefGoogle Scholar
  48. Sommer U (1989) Toward a Darwinian ecology of plankton. In: Sommer U (ed) Plankton ecology. Succession in plankton commnunities. Springer-Verlag, Berlin, pp 1–8Google Scholar
  49. Sommer U, Gliwicz ZM, Lampert W, Duncan A (1986) The PEG-model of seasonal succession of planktonic events in fresh waters. Arch Hydrobiol 106:433–471Google Scholar
  50. Soranno PA, Carpenter SR, He X (1993) Zooplankton biomass and body size. In: Carpenter SR, Kitchell JF (eds) The trophic cascade in lakes. Cambridge University Press, Cambridge, pp 172–188Google Scholar
  51. Stockwell JD, Johannsson OE (1997) Temperature-dependent allometric models to estimate zooplankton production in temperate freshwater lakes. Can J Fish Aquat Sci 54:2350–2360CrossRefGoogle Scholar
  52. Stott B, Cross DG (1973) The reactions of roach (Rutilus rutilus (L.)) to changes in the concentrations of dissolved oxygen and free carbon dioxide in a laboratory channel. Wat Res 7:793–805CrossRefGoogle Scholar
  53. Swift MC (1976) Energetics of vertical migration in Chaoborus trivittatus larvae. Ecology 57:900–914CrossRefGoogle Scholar
  54. Tessier AJ, Welser J (1991) Cladoceran assemblages, seasonal succession and the importance of a hypolimnetic refuge. Freshw Biol 25:85–93CrossRefGoogle Scholar
  55. Uusitalo L, Horppila J, Eloranta P, Liljendahl-Nurminen A, Malinen T, Salonen M, Vinni M (2003) Leptodora kindtii and flexible foraging behaviour of fish—factors behind the delayed biomass peak of cladocerans in Lake Hiidenvesi. Int Rev Hydrobiol 88:34–48CrossRefGoogle Scholar
  56. Vinyard GL, O’Brien J (1976) Effects of light and turbidity on the reactive distance of bluegill (Lepomis macrochirus). J Fish Res Bd Can 33:2845–2849Google Scholar
  57. Webster KE, Peters RH (1978) Some size-dependent inhibitions of larger cladoceran filterers in filamentous suspensions. Limnol. Oceanogr 23:1238–1245Google Scholar
  58. Windell JT (1971) Food analysis and the rate of digestion. In: Ricker W (ed) Methods for assessment of fish production in fresh waters. IPB handbook 3. Blackwell Scientific Publications, Oxford, pp 215–226Google Scholar
  59. Winfield IJ, Peirson G, Cryer M, Townsend CR (1983) The behavioural basis of prey selection by underyearling bream (Abramis brama (L.)) and roach (Rutilus rutilus (L.)). Freshw Biol 13:139–149CrossRefGoogle Scholar
  60. Wissel B, Ramcharan CW (2003) Plasticity of vertical distribution of crustacean zooplankton in lakes with varying levels of water colour. J Plankton Res 25:1047–1057CrossRefGoogle Scholar
  61. Wright D, Shapiro J (1990) Refuge availability: a key to understanding the summer disappearance of Daphnia. Freshw Biol 24:43–62CrossRefGoogle Scholar
  62. Yan ND, Keller W, MacIsaac HJ, McEachern LJ (1991) Regulation of zooplankton community structure of an acidified lake by Chaoborus. Ecol Appl 1:52–65CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Jukka Horppila
    • 1
  • Pertti Eloranta
    • 1
  • Anne Liljendahl-Nurminen
    • 1
  • Juha Niemistö
    • 1
  • Zeynep Pekcan-Hekim
    • 1
  1. 1.Department of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland

Personalised recommendations