Aquatic Ecology

, Volume 41, Issue 1, pp 9–23 | Cite as

Seasonal correlations of elemental and ω3 PUFA composition of seston and dominant phytoplankton species in a eutrophic Siberian Reservoir

  • Michail I. Gladyshev
  • Nadezhda N. Sushchik
  • Andzhela A. Kolmakova
  • Galina S. Kalachova
  • Elena S. Kravchuk
  • Elena A. Ivanova
  • Olesia N. Makhutova
Original Paper

Abstract

The elemental and fatty acid composition of seston was studied for 3 years, from May to October, in a small Reservoir. Under comparatively low C:P ratio, multivariate canonical analysis revealed no straightforward simple correlations between phosphorus and single ω3 PUFA species, but complex significant interaction between elemental composition (stoichiometry) of seston and total sestonic ω3 PUFA as a whole. Since sestonic C, P and N were found to originate mostly from phytoplankton, the contents of particulate elements and PUFA were attributed to single species in periods of their pronounced dominance. Phytoplankton species of genera of Stephanodiscus, Peridinium, Gomphosphaeria, Planktothrix and Anabaena in periods of their pronounced dominance had relatively constant species-specific elemental and PUFA composition. Phytoplankton species significantly differed in their elemental and PUFA composition, as well as in ratios of C:N, N:P, PUFA:P and partly C:P that indicate food quality for zooplankton. Hence, there were no phytoplankton species of clearly high or low nutritional value. All of phytoplankters, or at least detritus, that originated from them, may meet specific elemental and biochemical requirements of specific groups of zooplankton. Dividing phytoplankton on basis of their elemental and biochemical composition, i.e., nutrition quality, into large taxa (cyanobacteria, diatoms, etc.) appeared to be too coarse for assessing nutritional value for zooplankton.

Keywords

Seston Elemental stoichiometry Polyunsaturated fatty acids Phytoplankton 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acharya K, Kyle M, Elser JJ (2004) Effects of stoichiometric dietary mixing on Daphnia growth and reproduction. Oecologia 138:333–340PubMedCrossRefGoogle Scholar
  2. Ahlgren G, Goedkoop W, Markensten H, Sonesten L, Boberg M (1997) Seasonal variations in food quality for pelagic and benthic invertebrates in lake Erken – the role of fatty acids. Freshwater Biol 38:555–570CrossRefGoogle Scholar
  3. Ahlgren G, Gustafsson I-B, Boberg M (1992) Fatty acid content and chemical composition of freshwater microalgae. J Phycol 28:37–50CrossRefGoogle Scholar
  4. Andersen T, Hessen DO (1991) Carbon, nitrogen, and phosphorus content of freshwater zooplankton. Limnol Oceanogr 36:807–814Google Scholar
  5. Anderson TR, Boersma M, Raubenheimer D (2004) Stoichiometry: linking elements to biochemicals. Ecology 85:1193–1202CrossRefGoogle Scholar
  6. Bec A, Desvilettes C, Vera A, Fontvieille D, Bourdier G (2003) Nutritional value of different food sources for the benthic Daphnidae Simocephalus vetulus: role of fatty acids. Arch Hydrobiol 156:145–163CrossRefGoogle Scholar
  7. Becker C, Boersma M (2003) Resource quality effects on life histories of Daphnia. Limnol Oceanogr 48:700–706CrossRefGoogle Scholar
  8. Becker C, Boersma M (2005) Differential effects of phosphorus and fatty acids on Daphnia magna growth and reproduction. Limnol Oceanogr 50:388–397CrossRefGoogle Scholar
  9. Becker C, Feuchtmayr H, Brepohl D, Santer B, Boersma M (2004) Differential impacts of copepods and cladocerans on lake seston, and resulting effects on zooplankton growth. Hydrobiologia 526:197–207CrossRefGoogle Scholar
  10. Boersma M (2000) The nutritional quality of P-limited algae for Daphnia. Limnol Oceanogr 45:1157–1161Google Scholar
  11. Boersma M, Schops C, McCauley E (2001) Nutritional quality of seston for the freshwater herbivore Daphnia galeata × hyalina: biochemical versus mineral limitation. Oecologia 129:342–348Google Scholar
  12. Brett MT, Muller-Navarra DC, Park S-K (2000) Empirical analysis of the effect of phosphorus limitation on algal food quality for freshwater zooplankton. Limnol Oceanogr 45:1564–1575Google Scholar
  13. Campbell RC (1967) Statistics for biologists. University Press, Cambridge, 242Google Scholar
  14. Carrillo P, Villar-Argaiz M, Medina-Sanchez JM (2001) Relationship between N:P ratio and growth rate during the life cycle of calanoid copepods: an in situ measurement. J Plankton Res 23:537–547CrossRefGoogle Scholar
  15. DeMott WR (1998) Utilization of a cyanobacterium and a phosphorus-deficient green algae as a complementary resources by daphnids. Ecology 79:2463–2481CrossRefGoogle Scholar
  16. DeMott WR, Edington JR, Tessier AJ (2004) Testing zooplankton food limitation across gradients of depth and productivity in small stratified lakes. Limnol Oceanogr 49:1408–1416CrossRefGoogle Scholar
  17. DeMott WR, Gulati RD (1999) Phosphorus limitation in Daphnia: evidence from a long term study of three hypereutrophic Dutch lakes. Limnol Oceanogr 44:1557–1564Google Scholar
  18. DeMott WR, Gulati RD, Siewersten K (1998) Effects of phosphorus-deficient diets on the carbon and phosphorus balance of Daphnia magna. Limnol Oceanogr 43:1147–1161Google Scholar
  19. DeMott W, Gulati RD, Van Donk E (2001) Effects of dietary phosphorus deficiency on the abundance, phosphorus balance, and growth of Daphnia cucullata in three hypereutrophic Dutch lakes. Limnol Oceanogr 46:1871–1880CrossRefGoogle Scholar
  20. Elser JJ, Chrzanowski TH, Sterner RW, Mills KH (1998) Stoichiometric constraints on food-web dynamics: a whole-lake experiment on the Canadian Shield. Ecosystems 1:120–136CrossRefGoogle Scholar
  21. Gladyshev MI, Emelianova AY, Kalachova GS, Zotina TA, Gaevsky NA, Zhilenkov MD (2000) Gut content analysis of Gammarus lacustris from a Siberian lake using biochemical and biophysical methods. Hydrobiologia 431:155–163CrossRefGoogle Scholar
  22. Gladyshev MI, Temerova TA, Dubovskaya OP, Kolmakov VI, Ivanova EA (1999) Selective grazing on Cryptomonas by Ceriodaphnia quadrangula fed a natural phytoplankton assemblage. Aquat Ecol 33:347–353CrossRefGoogle Scholar
  23. Gulati RD, Bronkhorst M, Van Donk E (2001) Feeding in Daphnia galeata on Oscillatoria limnetica and on detritus derived from it. J Plankton Res 23:705–708CrossRefGoogle Scholar
  24. Gulati RD, DeMott WR (1997) The role of food quality for zooplankton: remarks on the state-of-the-art, perspectives and priorities. Freshwater Biol 38:753–768CrossRefGoogle Scholar
  25. Hall SR, Leibold MA, Lytle DA, Smith VH (2004) Stoichiometry and planktonic grazer composition over gradients of light, nutrients, and predation risk. Ecology 85:2291–2301CrossRefGoogle Scholar
  26. Hessen DO, Andersen T, Brettum P, and Faafeng BA (2003) Phytoplankton contribution to sestonic mass and elemental ratios in lakes: implications for zooplankton nutrition. Limnol Oceanogr 48:1289–1296CrossRefGoogle Scholar
  27. Hessen DO, Van Donk E, Gulati R (2005) Seasonal seston stoichiometry: effects on zooplankton in cyanobacteria dominated lakes. J Plankton Res 27:449–460CrossRefGoogle Scholar
  28. Jeffers J (1981) An introduction to system analysis: with ecological application. Mir, Moscow, 252 (translated from English)Google Scholar
  29. Kreeger DA, Goulden CE, Kilham SS (1997) Seasonal changes in the biochemistry of lake seston. Freshwater Biol 38:539–554CrossRefGoogle Scholar
  30. Leveille JC, Amblard C, Bourdier G (1997) Fatty acids as specific algal markers in a natural lacustrian phytoplankton. J Plank Res 19:469– 490CrossRefGoogle Scholar
  31. Mannino A, Harvey HA (1999) Lipid composition in particulate and dissolved organic matter in the Delaware Estuary: sources and diagenetic patterns. Geochim, Cosmochim Acta 63:2219–2235CrossRefGoogle Scholar
  32. Martin-Creuzburg D, Wacker A, Von Elert E (2005) Life history consequences of sterol availability in the aquatic keystone species Daphnia. Oecologia 144:362–372PubMedCrossRefGoogle Scholar
  33. Mitra A, Flynn KJ (2005) Predator–prey interactions: is ‘ecological stoichiometry’ sufficient when good food goes bad?. J Plankton Res 27:393–399CrossRefGoogle Scholar
  34. Muller-Navarra D (1995a) Evidence that a highly unsaturated fatty acid limits Daphnia growth in nature. Arch Hydrobiol 132:297–307Google Scholar
  35. Muller-Navarra DC (1995b) Biochemical versus mineral limitation in Daphnia. Limnol Oceanogr 40:1209–1214Google Scholar
  36. Muller-Navarra DC, Brett MT, Liston AM, Goldman CR (2000) A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Nature 403:74–77PubMedCrossRefGoogle Scholar
  37. Muller-Navarra DC, Brett MT, Park S, Chandra S, Ballantyne AP, Zorita E, Goldman CR (2004) Unsaturated fatty acid content in seston and tropho-dynamic coupling in lakes. Nature 427:69–72PubMedCrossRefGoogle Scholar
  38. Park S, Brett MT, Muller-Navarra DC, Goldman CR (2002) Esential fatty acid content and the phosphorus to carbon ratio in cultured algae as indicators of food quality for Daphnia. Freshwater Biol 47:1377–1390CrossRefGoogle Scholar
  39. Park S, Chandra S, Muller-Navarra DC, Goldman CR (2004) Diel and vertical variability of seston food quality and quantity in a small subalpine oligomesotrophic lake. J Plank Res 26:1489–1498CrossRefGoogle Scholar
  40. Ravet JL, Brett MT, Muller-Navarra DC (2003) A test of the role of polyunsaturated fatty acids in phytoplankton food quality for Daphnia using liposome supplementation. Limnol Oceanogr 48:1938–1947CrossRefGoogle Scholar
  41. Schulz KL, Sterner RW (1999) Phytoplankton phosphorus limitation and food quality for Bosmina. Limnol Oceanogr 44:1549–1556CrossRefGoogle Scholar
  42. Sterner RW, Schulz KL (1998) Zooplankton nutrition: recent progress and a reality check. Aquat Ecol 32:261–279CrossRefGoogle Scholar
  43. Stich HB (1991) Phosphorus and carbon values of zooplankton species in Lake Constance. Verh Internat Verein Limnol 24:837–841Google Scholar
  44. Sundbom M, Vrede T (1997) Effects of fatty acid and phosphorus content of food on the growth, survival and reproduction of Daphnia. Freshwater Biol 38:665–674CrossRefGoogle Scholar
  45. Sushchik NN, Gladyshev MI, Kalachova GS, Kravchuk ES, Dubovskaya OP, Ivanova EA (2003a) Particulate fatty acids in two small Siberian reservoirs dominated by different groups of phytoplankton. Freshwater Biol 48:394–403CrossRefGoogle Scholar
  46. Sushchik NN, Gladyshev MI, Makhutova ON, Kalachova GS, Kravchuk ES, Ivanova EA (2004) Associating particulate essential fatty acids of the ω3 family with phytoplankton species composition in a Siberian reservoir. Freshwater Biol 49:1206–1219CrossRefGoogle Scholar
  47. Sushchik NN, Gladyshev MI, Moskvichova AV, Makhutova ON, Kalachova GS (2003b) Comparison of fatty acid composition in major lipid classes of the dominant benthic invertebrates of the Yenisei river. Comparative Biochem, Physiol B 134:111–122CrossRefGoogle Scholar
  48. Urabe J (1993) N and P cycling coupled by grazers’ activities: food quality and nutrient release by zooplankton. Ecology 74:2337–2350CrossRefGoogle Scholar
  49. Urabe J, Watanabe Y (1992) Possibility of N or P limitation for planktonic cladocerans: an experimental test. Limnol Oceanogr 37:244–251CrossRefGoogle Scholar
  50. Villar-Argaiz M, Sterner RW (2002) Life history bottlenecks in Diaptomus clavipes induced by phosphorus-limited algae. Limnol Oceanogr 47:1229–1233CrossRefGoogle Scholar
  51. Von Elert E (2002) Determination of limiting polyunsaturated fatty acids in Daphnia galeata using a new method to enrich food algae with single fatty acids. Limnol Oceanogr 47:1764–1773CrossRefGoogle Scholar
  52. Von Elert E (2004) Food quality constraints in Daphnia: interspecific differences in the response to the absence of a long chain polyunsaturated fatty acid in the food source. Hydrobiologia 526:187–196CrossRefGoogle Scholar
  53. Von Elert E, Martin-Creuzburg D, Le Coz JR (2003) Absence of sterols constrains carbon transfer between cyanobacteria and a freshwater herbivore (Daphnia galeata). Proc R Soc Lond B 270:1209–1214CrossRefGoogle Scholar
  54. Von Elert E, Stampfl P (2000) Food quality for Eudiaptomus gracilis: the importance of particular highly unsaturated fatty acids. Freshwater Biol 45:189–200CrossRefGoogle Scholar
  55. Vrede T, Dobberfuhl DR, Kooijman SALM, Elser JJ (2004) Fundamental connections among organism C:N:P stoichiometry, macromolecular composition, and growth. Ecology 85:1217–1229CrossRefGoogle Scholar
  56. Wacker A, Von Elert E (2001) Polyunsaturated fatty acids: evidence for non-substitutable biochemical resources in Daphnia galeata. Ecology 82:2507–2520Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Michail I. Gladyshev
    • 1
    • 2
  • Nadezhda N. Sushchik
    • 1
  • Andzhela A. Kolmakova
    • 1
  • Galina S. Kalachova
    • 1
  • Elena S. Kravchuk
    • 1
  • Elena A. Ivanova
    • 3
  • Olesia N. Makhutova
    • 1
  1. 1.Institute of Biophysics of Siberian Branch of Russian Academy of SciencesAkademgorodok, KrasnoyarskRussia
  2. 2.Krasnoyarsk State UniversityKrasnoyarskRussia
  3. 3.Krasnoyarsk State Agricultural UniversityKrasnoyarskRussia

Personalised recommendations