Advertisement

Aquatic Ecology

, 40:349 | Cite as

Effects of NaCl salinity on the population dynamics of freshwater zooplankton (rotifers and cladocerans)

  • S. S. S. SarmaEmail author
  • S. Nandini
  • Jesús Morales-Ventura
  • Israel Delgado-Martínez
  • Leticia González-Valverde
Original Paper

Abstract

Salinization of freshwater bodies due to anthropogenic activity is currently a very serious problem in Mexico. One of the consequences may be changes in the rotifer and cladoceran populations, both of which are generally abundant in freshwater bodies. Under laboratory conditions we evaluated the effect of different salt (sodium chloride) concentrations (0–4.5 g l−1) on the population dynamics of ten freshwater zooplankton species (rotifers: Anuraeopsis fissa, Brachionus calyciflorus, B. havanaensis, B. patulus and B. rubens; cladocerans: Alona rectangula, Ceriodaphnia dubia, Daphnia pulex, Moina macrocopa and Simocephalus vetulus). All of the zooplankton species tested were adversely affected by 1.5–3.0 g l−1 NaCl. In the range of salt concentrations tested, the population growth curves of B. patulus and B. rubens showed almost no lag phase and reached peak abundances within a week or two; A. fissa had a lag phase of about a week, while both B. calyciflorus and B. havanaensis started to increase in abundance immediately following the initiation of the experiments. Increased NaCl levels reduced the population abundances of A. fissa, B. calyciflorus and B. havanaensis at or beyond 1.5 g l−1. NaCl at 1 g l−1 had little effect on the population growth of cladocerans. M. macrocopa, which was more resistant to NaCl than the other cladoceran species, showed positive population growth even at 4.5 g l−1. The rates of population increase (r, day−1) were generally higher for rotifers than for cladocerans. Depending on the NaCl concentration, the r of rotifers ranged from +0.57 to −0.58 day−1, while the r for cladocerans was lower (+0.34 to −0.22 day−1).

Keywords

Cladocerans Freshwater bodies Population dynamics Rotifers Salinity 

Notes

Acknowledgements

This investigation was supported by a project from CONACyT-41786-Q (Mexico). Two anonymous reviewers have improved our presentation.

References

  1. Akopian M, Garnier J, Pourriot R (2002) Cinétique du zooplancton dans un continnum aquatique: de Marne et son réservoir à l’estuaire de la Seine. C R Biol 325:807–818PubMedCrossRefGoogle Scholar
  2. Alcocer J, Sarma SSS (eds) (2002) Limnology of Mexico: Basic and applied aspects. Hydrobiologia 467:228Google Scholar
  3. Bailey S, Duggan IC, van Overdijk CDA, Johengen T, Reid DF, MacIssac HJ (2004) Salinity tolerance of diapausing eggs of freshwater zooplankton. Freshw Biol 49:286–295CrossRefGoogle Scholar
  4. Berezina NA (2003) Tolerance of freshwater invertebrates to changes in water salinity. Russ J Ecol 34:261–266CrossRefGoogle Scholar
  5. Blinn DW, Halse SA, Pinder AM, Shiel RR, McRae JM (2004) Diatom and micro-invertebrate communities and environmental determinations in the western Australian wheatbelt: a response to salinization. Hydrobiologia 528: 229–248CrossRefGoogle Scholar
  6. Borowitzka MA, Borowitzka LJ (1988) Micro-algal biotechnology. Cambridge University Press, CambridgeGoogle Scholar
  7. Campos-Ramos R, Maeda-Martinez AM, Obregon-Barboza H, Murugan G, Guerrero-Tortolero DA, Monsalvo-Spencer P (2003) Mixture of parthenogenetic and zygogenetic brine shrimp Artemia (Branchiopoda: Anostraca) in commercial cyst lots from Great Salt Lake, UT, USA. J Exp Mar Biol Ecol 296:243–251CrossRefGoogle Scholar
  8. Das RC, Mohapatra P, Mohanty RC (1995) Salt induced changes in the growth of Chlorococcum humicolo and Scenedesmus bijugatus under nutrient limited cultures. Bull Environ Contam Toxicol 54:695–702Google Scholar
  9. Dodson SI, Frey DG (2001) Cladocera and other branchiopoda. In: Thorp JH, Covich AP (eds) Ecology and classification of North American Freshwater invertebrates. Academic Press, London, pp 850–914Google Scholar
  10. Dumont HJ, Sarma SSS, Ali AJ (1995) Laboratory studies on the population dynamics of Anuraeopsis fissa (Rotifera) in relation to food density. Freshwater Biol 33:39–46CrossRefGoogle Scholar
  11. Figueroa JLA (2002) Los axalapascos de la cuenca oriental, Puebla. In: Espino GL, Calderón JLG (eds) Lagos y presas de México. AGT Publisher, Mexico City, pp 81–107Google Scholar
  12. Figueroa-Lucero G, Meza-Gonzalez O, Hernandez-Rubio MC, Barriga-Sosa IDA, Rodriguez-Canto A, Arredondo-Figueroa JL (2004) Growth, survival and mandible development in the larvae of the shortfin silverside Chirostoma humboldtianum (Valenciennes) (Atheniniformes: Atherinopsidae) under laboratory conditions. Aquaculture 242:689–696CrossRefGoogle Scholar
  13. Forbes VE, Calow P (1999) Is the per capita rate of increase a good measure of population-level effects in ecotoxicology? Environ Toxicol Chem 18:1544–1556CrossRefGoogle Scholar
  14. Green J (1993) Zooplankton associations in East African lakes spanning a wide salinity range. Hydrobiologia 267:249–256CrossRefGoogle Scholar
  15. Kefford BJ, Palmer CG, Pakhomova L, Nugegoda D (2004) Comparing test systems to measure the salinity tolerance of freshwater invertebrates. Water SA 30:499–506Google Scholar
  16. Krebs CJ (1985) Ecology: the experimental analysis of distribution and abundance, 3rd edn. Harper and Row, New YorkGoogle Scholar
  17. Martínez-Palacios CA, Morte JC, Tello-Ballinas JA, Toledo-Cuevas M, Ross LG (2004) The effects of saline environments on survival and growth of eggs and larvae of Chirostoma estor estor Jordan 1880 (Pisces: Atherinidae). Aquaculture 238:509–522CrossRefGoogle Scholar
  18. Mendoza AO, Acevedo GJ (2001) El lago de Pátzcuaro. In: Espino GL, Calderón JLG (eds) Lagos y presas de México. AGT Publisher, Mexico City, pp 127–148Google Scholar
  19. Morales-Ventura J, Nandini S, Sarma SSS (2004) Functional responses during the early larval stages of the charal fish Chirostoma riojai (Pisces: Atherinidae) fed zooplankton (rotifers and cladocerans). J Appl Ichthyol 20:417–421CrossRefGoogle Scholar
  20. Mustahal T, Yamasaki S, Hirata H (1991) Salinity adaptability of five different strains of the rotifer Brachionus plicatilis. Jpn Soc Sci Fish 57: 1997–2000Google Scholar
  21. Nandini S, Sarma SSS (2003) Population growth of some genera of cladocerans (Cladocera) in relation to algal food (Chlorella vulgaris) levels. Hydrobiologia 491:211–219CrossRefGoogle Scholar
  22. Nielsen DL, Brock MA, Crosslé K, Harris K, Healey M, Jarosinski I (2003) The effects of salinity on aquatic plant germination and zooplankton hatching from two wetland sediments. Freshwater Biol 48:2214–2223CrossRefGoogle Scholar
  23. Nogrady T, Wallace RL, Snell TW (1993) Rotifera. SBP Academic Publishers, The HagueGoogle Scholar
  24. Peredo-Alvarez VM, Sarma SSS, Nandini S (2003) Combined effect of concentrations of algal food (Chlorella vulgaris) and salt (sodium chloride) on the population growth of Brachionus calyciflorus and Brachionus patulus (Rotifera). Rev Biol Trop 51:399–408PubMedGoogle Scholar
  25. Sarma SSS, Nandini S (2002) Comparative life table demography and population growth of Brachionus macracanthus Daday, 1905 and Platyias quadricornis Ehrenberg, 1832 (Rotifera, Brachionidae) in relation to algal (Chlorella vulgaris) food density. Acta Hydrochim Hydrobiol 30:128–140CrossRefGoogle Scholar
  26. Sarma SSS, Larios-Jurado PS, Nandini S (2001) Effect of three food types on the population growth of Brachionus calyciflorus and Brachionus patulus (Rotifera: Brachionidae). Rev Biol Trop 49:75–82Google Scholar
  27. Sarma SSS, Elguea-Sánchez B, Nandini S (2002) Effect of salinity on competition between the rotifers Brachionus rotundiformis Tschugunoff and Hexarthra jenkinae (De Beauchamp) (Rotifera). Hydrobiologia 474:183–188CrossRefGoogle Scholar
  28. Sarma SSS, Beladjal L, Nandini S, Cerón-Martínez G, Tavera-Briseño K (2005a) Effect of salinity stress on the life history variables of Branchipus schaefferi Fisher, 1834 (Crustacea: Anostraca). Saline Syst 1:4, 1–11CrossRefGoogle Scholar
  29. Sarma SSS, Nandini S, Gulati RD (2005b) Life history strategies of cladocerans: comparisons of tropical and temperate taxa. Hydrobiologia 542:315–333CrossRefGoogle Scholar
  30. Sokal RR, Rohlf FJ (2000) Biometry. WH Freeman, San FranciscoGoogle Scholar
  31. Stearns S (1992) The evolution of life histories. Oxford University Press, New YorkGoogle Scholar
  32. Torres AC, Días JA (2002) El lago de Cuitzeo. In: Espino GL, Calderón JLG (eds) Lagos y presas de México. AGT Publisher, Mexico City, pp 157–169Google Scholar
  33. Walker KF (1981) A synopsis of ecological information on the saline lake rotifer Brachionus plicatilis, Müller, 1786. Hydrobiologia 81:150–167CrossRefGoogle Scholar
  34. Wallace RL, Snell TW (2001) Phylum Rotifera. In: Thorp JH, Covich AP (eds) Ecology and classification of North American freshwater invertebrates. Academic Press, 2nd edn. New York, pp 195–254Google Scholar
  35. Weber CI (ed) (1993) Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. US EPA/600/4–90/027F, OhioGoogle Scholar
  36. Williams DD (1987) The ecology of temporary waters. Croom Helm/Timber Press, London, Sidney/Portland, Ore.Google Scholar
  37. Williams WD (1998) Salinity as a determinant of the structure of biological communities in salt lakes. Hydrobiologia 381:191–201CrossRefGoogle Scholar
  38. Williams WD, De Deccker P, Shiel RJ (1998) The limnology of Lake Torrens, an episodic salt lake of Central Australia, with particular reference to unique events in 1989. Hydrobiologia 384:101–110CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • S. S. S. Sarma
    • 1
    Email author
  • S. Nandini
    • 2
  • Jesús Morales-Ventura
    • 3
  • Israel Delgado-Martínez
    • 1
  • Leticia González-Valverde
    • 1
  1. 1.Laboratorio de Zoología Acuática, Edificio UMFUniversidad Nacional Autónoma de México – Campus IztacalaEdo. de MéxicoMexico
  2. 2.UIICSE, División de Investigación y PosgradoUniversidad Nacional Autónoma de México – Campus IztacalaEdo. de MéxicoMexico
  3. 3.National Institute of Fisheries (DGIDT)Santa Cruz AtoyacMexico CityMexico

Personalised recommendations