Aquatic Ecology

, Volume 40, Issue 3, pp 381–390 | Cite as

Use of isotopic signatures to assess the food web in a tropical shallow marine ecosystem of Southeastern Brazil

  • T.N. CorbisierEmail author
  • L.S.H. Soares
  • M.A.V. Petti
  • E.Y. Muto
  • M.H.C. Silva
  • J. McClelland
  • I. Valiela


A dual isotope approach was used to assess the relative importance of terrestrial vegetation detritus and other primary producers in the trophic web of Flamengo Sound (Ubatuba, SP), SE Brazil, surrounded by the Atlantic Rain Forest. Primary producers showed distinct \(\delta^{13}\)C signatures and the observed values suggest that little terrestrial \((-29.4\pm0.3\permille)\) or bulk sediment organic matter \((-21.1\pm1.3\permille)\) enter the food web of the sound. Suspended particulate organic matter (POM, \(-18.6\pm0.5\permille)\) supports the bulk of the consumers, with some contribution by macroalgae \((-15.6\pm1.8\permille)\). Consumers \(\delta^{13}\)C values ranged from −17.4 to \(-12.7\permille\). At least three trophic levels were detectable in the food web. The \(\delta^{15}\)N value of POM was \(7.5\pm1.0\permille\), while that of sediment and detritus was \(6.4\pm0.7\permille\). The \(\delta^{15}\)N values of suspension feeding benthic invertebrates were 8.2–\(8.6\permille\), deposit feeders 8.3–\(10.2\permille\), and carnivores 10.7–\(13.2\permille\). Values for fishes were \(9.4\permille\) for detritivore, 11.4–\(13.3\permille\) for benthic feeders, 12.4–\(13.3\permille\) for zooplanktivores, and \(13.2\permille\) for piscivores/benthic invertebrate feeders. Squid mean value was \(12.8\pm0.5\permille\). There is a reasonable agreement between feeding habits information from the literature and \(\delta^{15}\)N values from this study. In the sound, the first and second trophic steps seem to be about 1–\(3\permille\) higher than those of similar organisms studied in temperate waters and this may reflect an input of allochtonous anthropogenic nitrogen enriched in 15N from human activities.


Food web \(\delta^{15}\)\(\delta^{13}\)Stable isotopes Southeastern Brazil Tropical coastal area 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was developed during the Marine Ecological Processes Course, given by I. Valiela and J. McClelland, at the Instituto Oceanográfico, University of São Paulo, São Paulo, Brazil, in 1999. We thank Eurico Cabral de Oliveira for the identification of the macroalgae, Maysa Pompeu for their assistance in collecting POM samples, and everyone at the Ubatuba Marine Station of the Instituto Oceanográfico, for help in the field work. We wish to thank two anonymous reviewers for their helpful comments.


  1. Aidar E., Gaeta S.A., Gianesella-Galvão SMF, Kutner M.B.B. and Teixeira C. (1993). Ecossistema costeiro subtropical: nutrientes dissolvidos, fitoplâncton e clorofila-a e suas relações com as condições oceanográficas na região de Ubatuba, SP. Publção Esp. Inst. Oceanogr., S Paulo (10): 9–43Google Scholar
  2. Ambler J.W., Alcala-Herrera J. and Burke R. (1994). Trophic roles of particle feeders and detritus in a mangrove island prop root ecosystem. Hydrobiologia 292–293: 437–446Google Scholar
  3. Andriguetto J.M. and Haimovici M. (1997). Feeding habits of Loligo sanpaulensis Brakoniecki, 1984 (Cephalopoda: Loliginidae) in southern Brazil. Neritica 11: 63–76Google Scholar
  4. Arruda E.P., Domaneschi O. and Amaral A.C.Z. (2003). Mollusc feeding guilds on sandy beaches in São Paulo state, Brazil. Mar. Biol. 143: 691–701CrossRefGoogle Scholar
  5. Azevedo G.F.O. 2002. Variabilidade sazonal (outono-primavera) da produtividade primária e biomassa fitoplantônica na Enseada do Flamengo, Ubatuba, Litoral Norte do Estado de São Paulo. M.S. thesis. Instituto Oceanográfico, Universidade de São PauloGoogle Scholar
  6. Barcellos R.L., Camargo P.B., Ykuta C. and Furtado V.V. 2004. Composição isotópica do carbono (\(\delta^{13}\)C) e nitrogênio (\(\delta^{15}\)N) e razão elementar C/N das fontes naturais de matéria orgânica no sistema estuarino lagunar de Cananéia-Iguape, estado de São Paulo. In: Anais do 1° Congresso Brasileiro de Oceanografia. Santa Catarina, Itajaí, UNIVALI, pp. 236–245Google Scholar
  7. Barcellos R.L., Camargo P.B. and Furtado V.V. 2005. Stable carbon (\(\delta^{13}\)C) and nitrogen (\(\delta^{15}\)N) isotopes in sediments of Cananéia-Iguape lagoonal system, São Paulo state, Southeastern Brazil. In XI Congresso Latino Americano del Ciencias del Mar. Chile, Valparaiso, ECM PUC y ALICCMAR, p. 299Google Scholar
  8. Bencke C.S .C. and Morellato L.P.C. 2002. Estudo comparativo da fenologia de nove espécies arbóreas em três tipos de floresta atlântica no sudeste do Brasil. Rev. Bras. Bot. 25: 237–248Google Scholar
  9. Branco J.O. and Moritz H.C.J. (2001). Alimentação natural do camarão sete-barbas, Xiphopenaeus kroyeri (Heller) (Crustacea, Decapoda), na Armação do Itapocoroy, Penha, Santa Catarina. Revta Bras. Zool. 18: 53–61Google Scholar
  10. Branco J.O. and Verani J.R. (1997). Feeding natural dynamics of Callinectes danae Smith (Decapoda, Portunidae) from Lagoa da Conceição, Florianópolis, Santa Catarina, Brazil. Revta Bras. Zool. 14: 1003–1018CrossRefGoogle Scholar
  11. Bouillon S., Raman A.V., Dauby P. and Dehairs F. (2002a). Carbon and nitrogen stable isotope ratios of subtidal benthic invertebrates in an estuarine mangrove ecosystem (Andhra Pradesh, India). Estuar. Coast. Shelf Sci. 54: 901–913CrossRefGoogle Scholar
  12. Bouillon S., Koedan N., Raman A.V. and Dehairs F. (2002b). Primary producers sustaining macro-invertebrate communities in intertidal mangrove forests. Oecologia 130: 441–448CrossRefGoogle Scholar
  13. Castro Filho B.M., Miranda L.B. and Myao S.Y. (1987). Considerações hidrográficas na plataforma continental ao largo de Ubatuba: variações sazonais e em média escala. Bolm Inst. Oceanogr., S Paulo 35:135–151Google Scholar
  14. Cole M.L., Kroeger K.D., McClelland J.W. and Valiela I. (2005). Macrophytes as indicators of land-derived wastewater: application of a \(\delta^{15}\)N method in aquatic systems. Water Resour. Res. 41: W01014, doi:10.1029/2004WR003269CrossRefGoogle Scholar
  15. Costanzo S.D., O’Donohue M.J., Dennison W.C., Loneragan N.R. and Thomas M. (2001). A new approach for detecting and mapping sewage impacts. Mar. Pollut. Bull. 42: 149–156PubMedCrossRefGoogle Scholar
  16. Corbisier T.N., Sousa E.C.P.M. de and Eichler B.B. (1997). Distribuição espacial do meiobentos e do microfitobentos na Enseada do Flamengo, Ubatuba, São Paulo. Rev. Bras. Biol. 57: 109–119Google Scholar
  17. Currin C.A., Newell S.Y. and Paerl H.W. (1995). The role of standing dead Spartina alterniflora and benthic microalgae in salt marsh food webs: considerations based on multiple stable isotope analysis. Mar. Ecol. Prog. Ser. 121: 99–116CrossRefGoogle Scholar
  18. Deegan L.A. and Garritt R.H. (1997). Evidence for spatial variability in estuarine food webs. Mar. Ecol. Prog. Ser. 147: 31–47CrossRefGoogle Scholar
  19. Dehairs F., Rao R.G., Chandra Mohan P., Raman A.V., Marguillier S. and Hellings L. (2000). Tracing mangrove carbon in suspended matter and aquatic fauna of the Guatami-Godavari Delta, Bay of Bengal (India). Hydrobiologia 431: 225–241CrossRefGoogle Scholar
  20. Fauchald K. and Jumars P.A. (1979). The diet of worms: a study of polychaete feeding guilds. Oceanogr. Mar. Biol. Rev. 17: 193–284Google Scholar
  21. Fry B. and Sherr E.B. (1984). \(\delta^{13}\)C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contr. Mar. Sci. 27: 13–47Google Scholar
  22. Fry B. and Smith T.J., III (2002). Stable isotope studies of red mangrove and filter feeders from the Shark River estuary, Florida. Bull. Mar. Sci. 70: 871–890Google Scholar
  23. Fry B., Mumford P.L., Robblee M.B. (1999). Stable isotope studies of pink shrimp (Farfapenaeus duorarum Burkenroad) migrations on the southeastern Florida shelf. Bull. Mar. Sci. 65: 419–430Google Scholar
  24. Gasalla M. de los A. and Oliveira M.R. 1997. Papel trófico de clupeídeos da costa sudeste do Brasil. In: XII Encontro Brasileiro de Ictiologia. Abstracts. Instituto Oceanográfico, Universidade de São Paulo, p. 33Google Scholar
  25. Griffin M.P.A. and Valiela I. (2001). \(\delta^{15}\)N isotopes studies of life history and trophic position of Fundulus heteroclitus and Menidia menidia. Mar. Ecol. Prog. Ser. 214: 299–305CrossRefGoogle Scholar
  26. Heikoop J.M., Risk M.J., Lazier A.V., Edinger E.N., Jompa J., Limmon G.V., Dunn J.J., Browne D.R. and Schwarcz H.P. (2000). Nitrogen-15 signals of anthropogenic nutrient loading in reef corals. Mar. Pollut. Bull. 40: 628–636CrossRefGoogle Scholar
  27. Helmer J.L., Teixeira R.L. (1995). Food habits of young Trachinotus (Pisces, Carangidae) in the inner surf zone of a sandy beach of Southeast Brazil. Atlântica 17: 95–107Google Scholar
  28. Kwak T.J. and Zedler J.B. (1997). Food web analysis of southern California coastal wetlands using multiple stable isotopes. Oecologia 110: 262–277CrossRefGoogle Scholar
  29. Lin G., Banks T. and Sternberg L.S.L.O. (1991). Variation in \(\delta^{13}\)C values for the seagrass Thalassia testudinum and its relations to mangrove carbon. Aquat. Bot. 40: 333–341CrossRefGoogle Scholar
  30. Loneragan N.R., Bunn S.E. and Kellaway D.M. (1997). Are mangroves and seagrasses sources of organic carbon for penaeid prawns in a tropical Australian estuary? A multiple stable-isotope study. Mar. Biol. 130: 289–300CrossRefGoogle Scholar
  31. Mahiques M.M. (1995). Dinâmica sedimentar atual nas enseadas da região de Ubatuba, Estado de São Paulo. Bolm Inst. Oceanogr., S Paulo 43: 111–122Google Scholar
  32. Mahiques M.M., Tessler M.G., Furtado V.V. (1998). Characterization of energy gradient in enclosed bays of Ubatuba region, south-eastern Brazil. Estuar. Coast. Shelf Sci. 47: 431–446CrossRefGoogle Scholar
  33. Mahiques M.M., Mishima Y. and Rodrigues M. (1999). Characteristics of the sedimentary organic matter on the inner and middle continental shelf between Guanabara Bay and São Francisco do Sul, southeastern Brazilian margin. Contin. Shelf Res. 19: 775–798CrossRefGoogle Scholar
  34. Mantelatto F.L., Christofoletti R.A. and Camargo P.B. (2002). A food source analysis for the swimming crab Callinectes ornatus (Portunidae) in Ubatuba Bay (Brazil), using carbon isotopes. Nauplius 10: 61–66Google Scholar
  35. Marguillier S., van der Velde G., Dehairs F., Hemminga M.A. and Rajagopal S. (1997). Trophic relationships in an interlinked mangrove–seagrass ecosystem as traced by \(\delta^{13}\)C and \(\delta^{15}\)N. Mar. Ecol. Prog. Ser. 151: 115–121CrossRefGoogle Scholar
  36. Martinetto P., Teichberg M. and Valiela I. 2006. Coupling of estuarine benthic and pelagic food webs to land-derived nitrogen sources in Waquoit Bay, Massachusetts. Mar. Ecol. Prog. Ser. 307: 37–48Google Scholar
  37. Matsuura Y. and Wada E. (1994). Carbon and nitrogen stable isotope ratios in marine organic matters of the coastal ecosystem in Ubatuba, southern Brazil. Ciência Cult. 46: 142–146Google Scholar
  38. McClelland J.W. and Valiela I. (1997). Nitrogen-stable isotope signatures in estuarine food webs: a record of increasing urbanization in coastal watersheds. Limnol. Oceanogr. 42: 930–937CrossRefGoogle Scholar
  39. McClelland J.W. and Valiela I. (1998). Changes in food web structure under the influence of increased anthropogenic nitrogen inputs to estuaries. Mar. Ecol. Prog. Ser. 168: 259–271CrossRefGoogle Scholar
  40. McClelland J.W. and Valiela I. (1998). Linking nitrogen in estuarine producers to land-derived sources. Limnol. Oceanogr. 43: 577–585CrossRefGoogle Scholar
  41. McKee K.L., Feller I.C., Popp M. and Wanek W. (2002). Mangrove isotopic \(\delta^{15}\)N and \(\delta^{13}\)C fractionation across a nitrogen vs. phosphorus limitation gradient. Ecology 83: 1065–1075Google Scholar
  42. McKinney R.A., Nelson W.G., Charpentier M.A. and Wigand C. (2001). Ribbed mussel nitrogen isotope signatures reflect nitrogen sources in coastal salt marshes. Ecol. Appl. 11: 203–214CrossRefGoogle Scholar
  43. Moriniere E.C., Pollux B.J.A., Nagelkerken I., Hemminga M.A., Huiskes A.H.L. and van der Velde G. (2003). Ontogenetic dietary changes of coral reef fishes in the mangrove-seagrass-reef continuum: stable isotopes and gut-content analysis. Mar. Ecol. Prog. Ser. 246: 279–289CrossRefGoogle Scholar
  44. Navarrete S.A. and Wieters E.A. (2000). Variation in barnacle recruitment over small scales: larval predation by adults and maintenance of community pattern. J. Exp. Mar. Biol. Ecol. 253: 131–148PubMedCrossRefGoogle Scholar
  45. Oliveira F.E.C., Pirani J.R. and Giulietti A.M. (1983). The Brazilian seagrasses. Aquat. Bot. 16: 251–267CrossRefGoogle Scholar
  46. Oliveira I. da R. and Soares L.S.H. (1996). Alimentação da tainha Mugil plattanus Gunther, 1880 (Pisces: Mugilidae) da região estuarino-lagunar de Cananéia, São Paulo, Brasil. Bolm. Inst. Pesca 23: 95–104Google Scholar
  47. Perazza M.C.D. 1982. Variação sazonal do fitoplâncton e dos fatores ambientais na Enseada do Flamengo (Lat. 23°30′ S – Long. 45°06′ W). Algumas considerações metodológicas. M.S. thesis. Instituto Oceanográfico, Universidade de São PauloGoogle Scholar
  48. Peterson B.J. (1999). Stable isotopes as tracers of organic matter input and transfer in benthic food webs: a review. Acta Oceanol. 20: 479–487CrossRefGoogle Scholar
  49. Peterson B.J. and Fry B. (1987). Stable isotopes in ecosystem studies. Ann. Rev. Ecol. Syst. 18: 293–320CrossRefGoogle Scholar
  50. Petti M.A.V. (1997). Papel dos crustáceos braquiúros na rede trófica da plataforma interna de Ubatuba, São Paulo (Brasil). Nerítica 11: 123–137Google Scholar
  51. Pires A.M.S. 1992. Structure and dynamics of benthic megafauna on the continental shelf offshore of Ubatuba, southeastern Brazil. Mar. Ecol. Prog. Ser. 86: 63–76CrossRefGoogle Scholar
  52. Rao R.G., Woichik A.F., Goyens L., van Riet A., Kazungu J. and Dehairs F. (1999). Carbon, nitrogen contents and stable carbon isotope abundance in mangrove leaves from an east African coastal lagoon (Kenya). Aquat. Bot. 47: 175–183CrossRefGoogle Scholar
  53. Rezende C.E., Lacerda L.D., Ovalle A.R.C., Silva C.A.R. and Marteinelli L.A. (1990). Nature of POC transport in a mangrove ecosystem: a carbon stable isotopic study. Estuar. Coast. Shelf Sci. 30: 641–645CrossRefGoogle Scholar
  54. Rios E. (1994). Seashells of Brazil. Editora da Fundação Universidade do Rio Grande, Rio Grande, RS, Brazil, 368 ppGoogle Scholar
  55. Rodrigues M.M. (1974). Alimentação do ariaco, Lutjanus synagris Linnaeus, do Estado do Ceará (Brasil). Arq. Cienc. mar. 14: 61–62Google Scholar
  56. Sassi R. and Kutner M.B.B. (1982). Variação sazonal do fitoplâncton na região do Saco da Ribeira (Lat.23°30′S-; Long. 45°07W) Ubatuba, Brasil. Bolm Inst. oceanogr., S Paulo 31: 29–42Google Scholar
  57. Savage C. and Emgren R. (2004). Macroalgal (Fucus vesiculosus) \(\delta^{15}\)N values trace decrease in sewage influence. Ecol. Appl. 14: 517–526CrossRefGoogle Scholar
  58. Sigman D.M., Altabet M.A., McCorkle D.C., François R. and Fischer G. (2000). The \(\delta^{15}\)N of nitrate in the Southern Ocean: nitrogen cycling and circulation in the ocean interior. J. Geophys. Res. C 105: 19599–19614CrossRefGoogle Scholar
  59. Soares L.S.H., Muto E.Y., Gasparro M.R. and Rossi- Wongtschowski C.L.D.B. in press. Organização Trófica dos Peixes. In: Pires-Vanin A.M.S. (ed.), Oceanografia de um Ecossistema Tropical: Plataforma Interna de São Sebastião. EDUSP, São PauloGoogle Scholar
  60. Tararam A.S., Wakabara Y. and Equi M.B. 1993. Hábitos alimentares de onze espécies da megafauna bêntica da plataforma continental de Ubatuba, SP. Publção esp. Inst. oceanogr., S Paulo (10): 159–167Google Scholar
  61. Teixeira R.L. 1997. Distribuição e hábitos alimentares do camurim, Centropomus undecimalis (Pisces: Centropomidae) em um estuário tropical brasileiro. Bol. Mus. Biol. Mello Leitão (6): 35–46Google Scholar
  62. Vanderklift M.A. and Ponsard S. (2003). Sources of variation in consumer-diet \(\delta^{15}\)N enrichment: a meta-analysis. Oecologia 136: 169–182PubMedCrossRefGoogle Scholar
  63. Vasconcelos-Filho A., de L. and Braga-Galiza E.M. (1980). Hábitos alimentares dos peixes centropomídeos cultivados em viveiros da região de Itamaraca, Pernambuco, Brasil. Rev. Nordestina Biol. 3: 111–122Google Scholar
  64. Waldron S., Tatner P., Jack I. and Arnott C. (2001). The impact of sewage discharge in a marine embayment: a stable isotope reconnaissance. Estuar. Coast. Shelf Sci. 52: 111–115CrossRefGoogle Scholar
  65. Zieman J.C., Macko S.A. and Mills A.L. (1984). Role of seagrass and mangroves in estuarine food webs: temporal and spatial changes in stable isotope composition and amino acid content during decomposition. Bull. Mar. Sci. 35: 380–392Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • T.N. Corbisier
    • 1
    Email author
  • L.S.H. Soares
    • 1
  • M.A.V. Petti
    • 1
  • E.Y. Muto
    • 1
  • M.H.C. Silva
    • 1
  • J. McClelland
    • 2
  • I. Valiela
    • 3
  1. 1.Departamento de Oceanografia BiológicaInstituto Oceanográfico, Universidade de São PauloSão PauloBrasil
  2. 2.The Ecosystems CenterMarine Biological LaboratoryWoods HoleUSA
  3. 3.Boston University Marine Program, Marine Biological LaboratoryWoods HoleUSA

Personalised recommendations