Aquatic Ecology

, Volume 40, Issue 3, pp 315–324 | Cite as

Is spread of the neophyte Spartina anglica recently enhanced by increasing temperatures?

  • Martina Loebl
  • Justus E. E. van Beusekom
  • Karsten Reise
Article

Abstract

The introduced cordgrass Spartina anglica, a fertile hybrid of S. maritima and S. alterniflora, grows as a pioneer plant in the upper intertidal zone and has invaded most sheltered shorelines of the Wadden Sea. After its introduction in 1927 S. anglica has spread vigorously along the mainland shore and on some of the more southern islands. In contrast, it has later established on Sylt and spread at a lower pace. On the island of Sylt it occurs near at its northern limit in Europe. Due to rising sea level and storm frequency a decrease or steady state of S. anglica was expected because its niche is narrowing rather than widening and plants are more frequently eroded. Contrary to that, many new sites were colonized and dense monotypic swards have formed after 1985. This new spread coincided with a shift in the local temperature regime around 1987. The monthly mean temperature from January to April has increased significantly after 1987. Furthermore, the important physiological thresholds of 4 °C for germination and 7 °C for photosynthesis were more often exceeded during spring after 1987 than before. We suggest that warmer spring seasons since 1988 could have promoted germination, growth and the recent accelerated spread of this neophyte.

Keywords

Invasive species Regime shift Salt marsh Spartina Temperature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors are indebted to V.N. de Jonge for his support during the revision of this manuscript. Comments by three anonymous reviewers are gratefully acknowledged. We would like to thank D. Lackschewitz for aerial photographs and a ground survey including some very helpful mappings of the cordgrass.

References

  1. Adam P. (1990) Saltmarsh Ecology. Cambridge University Press, CambridgeGoogle Scholar
  2. Anderson U.V. (1995) Invasive aliens: a threat to the Danish coastal vegetation. In: Healy M.G., Doody J.P. (eds), Directions in European Coastal Management. Samara Publishing Limited, Cardigan, pp. 335–344Google Scholar
  3. Beaugard G. (2004) The North Sea regime shift: evidence, causes, mechanisms and consequences. Prog. Oceanogr. 60: 245–262CrossRefGoogle Scholar
  4. Beeftink W.G. (1975) The ecological significance of embankment and drainage with respect to the vegetation of the south-west Netherlands. J. Ecol. 63: 423–458CrossRefGoogle Scholar
  5. Dijkema K.S. (1983) The salt-marsh vegetation of the mainland coast, estuaries and halligen. In: Wolff W.J. (eds), Ecology of the Wadden Sea Vol. 9. Balkema, Rotterdam, pp. 185–220Google Scholar
  6. Dunn R., Long S.P. and Thomas S.M. (1981) The effect of temperature on the growth and photosynthesis of the temperate C4 grass Spartina townsendii. In: Grace J., Ford E.D., Jarvis P.G. (eds), Plants and their Atmospheric Environment. Blackwell, Oxford, pp 303–312Google Scholar
  7. Ehlers J. (1988) Morphologische Veränderungen auf der Wattseite der Barriere-Inseln des Wattenmeeres. Die Küste 47: 3–30Google Scholar
  8. Führböter A. (1989) Changes of the tidal water levels at the German North Sea coast. Helgoland Mar. Res. 43: 325–332Google Scholar
  9. Gätje C. and Reise K. (1998) Ökosystem Wattenmeer. Austausch, Transport und Stoffumwandlungsprozesse. Springer, Berlin-HeidelbergGoogle Scholar
  10. Gettner S., Heinzel K. and Kohlus J. 2000. Die Entwicklung der aktuellen Vegetation auf der Hamburger Hallig nach Änderung der Nutzung. In: Stock M. and Kiehl K. (eds.), Die Salzwiesen der Hamburger Hallig. Schriftenreihe des Nationalparks Schleswig-Holsteinisches Wattenmeer. Vol. 11. Westholsteinische Verlagsanstalt Boyens & Co, Heide, pp. 24–33Google Scholar
  11. Goodman P.J., Braybrooks E.M., Marchant C.J and Lambert J.M. (1969) Spartina× townsendii H.J. Groves sensu lato. J. Ecol. 57: 298–313CrossRefGoogle Scholar
  12. Gray A.J., Marshall D.F. and Raybould A.F. (1991) A Century of Evolution in Spartina anglica. In: Begon M, Fitter A.H, Macfayden A (eds), Advances in Ecological Research Vol. 21. Academic Press, LondonGoogle Scholar
  13. Gray A.J., Warman E.A., Clarke R.T. and Johnson P.J. (1995) The niche of Spartina anglica on a changing coastline. In: Jones N.V. (eds), Coastal Zone Topics: Process, Ecology & Management Vol 1. The Changing coastline, HMSO, London, pp. 29–34Google Scholar
  14. Gray A.J. and Mogg R.J. (2001) Climate impacts on pioneer salt marsh plants. Climate Res. 18: 105–112CrossRefGoogle Scholar
  15. Higelke B. (1998) Morphodynamik des Lister Tidebeckens. In: Gätje C. and Reise, K. (eds), Ökosystem Wattenmeer. Austausch-, Transport- und Stoffumwandlungsprozesse. Springer, Berlin-Heidelberg, pp. 103–126Google Scholar
  16. Hobohm C. (1986) Die Salzwiesen von Sylt. Kieler Notizen zur Pflanzenkunde. Schleswig-Holstein und Hamburg 18(2): 57–79Google Scholar
  17. Hofstede J.L.A. (1999) Process-response analysis for Hörnum tidal inlet in the German sector of the Wadden Sea. Quarternary Int. 60: 197–117Google Scholar
  18. Hubbard J.C.E. (1970) Effects of cutting and seed production in Spartina anglica. J. Ecol. 58: 329–334CrossRefGoogle Scholar
  19. Hubbard J.C.E. and Stebbings E. (1967) Distribution, Dates of origin and acreage of Spartina townsendii (sl) marshes in Great Britain. P. Bot. Soc. Brit. Isl. 7: 1–7Google Scholar
  20. König D. (1948) Spartina townsedii an der Westküste von Schleswig-Holstein. Planta 35: 34–70CrossRefGoogle Scholar
  21. Lackschewitz D., Menn I. and Reise K. (2002) Das marine Ökosystem um Sylt unter veränderten Klimabedingungen. In: Daschkeit A. and Schottes P. (eds), Klimafolgen für Mensch und Küste am Beispiel der Nordseeinsel Sylt. Springer-Verlag, Berlin, pp. 153–178Google Scholar
  22. Linke O. (1940) Die Entwicklung der biologischen Wattforschung in den letzten Jahren. Forschungen und Fortschritte 16(27): 297–300Google Scholar
  23. Long S.P. (1990) The primary production of Puccinellia maritima and Spartina anglica: A simple predictive model of response to climatic change. In: Beukema J.J., Wolff W.J., Brouns J.J.W.M. (eds) Expected Effects of Climatic Change on Marine Coastal Ecosystems. Kluwer Academic Publishers, Dordrecht, Boston, London, pp. 33–38Google Scholar
  24. Long S.P., Incoll L.D. and Woolhouse H.W. (1975) C4 photosynthesis in plants from cool temperate regions, with particular reference to Spartina townsendii. Nature 257: 622–624CrossRefGoogle Scholar
  25. Mallott P.G., Davy A.J., Jefferies R.L. and Hutton M.J. (1975) Carbon Dioxide Exchange in Leaves of Spartina anglica Hubbard. Oecologia 20: 351–358CrossRefGoogle Scholar
  26. Marchant C.J. (1967) Evolution in Spartina (Gramineae) I. The history and morphology of the genus in Britain. J. Lin. Soc. Lon. 60: 1–24CrossRefGoogle Scholar
  27. Marchant C.J. (1968a) Evolution in Spartina (Gramineae) II. Chromosomes, basic relationships and the problem of S. x townsendii agg. J. Lin. Soc. Lon. 60:381–409CrossRefGoogle Scholar
  28. Marchant C.J. (1968b) Evolution in Spartina (Gramineae) III. Species chromosome numbers and their taxonomic significance. J. Lin. Soc. Lon. 60: 411–417CrossRefGoogle Scholar
  29. Meesenburg H. (1975) Spartinas kolonisations langs Ho Bugt. Geogr. Tidskr. 71: 37–45Google Scholar
  30. Morris J.T. and Jensen A. (1998) The carbon balance of grazed and non-grazed Spartina anglica saltmarshes at Skallingen, Denmark. J. Ecol. 86: 229–242CrossRefGoogle Scholar
  31. Oliver F.W. (1920) Spartina problems. Ann. Appl. Biol. 7: 25–39CrossRefGoogle Scholar
  32. Oliver F.W. (1925) Spartina townsendii; it’s mode of establishment, economic uses and taxonomic status. J. Ecol. 13: 74–91CrossRefGoogle Scholar
  33. Packham J.R. and Willis A.J. (1997) Ecology of Dunes, Salt marsh and Shingle. Chapman & Hall, London, pp 335Google Scholar
  34. Parmesan C. and Yohe G. (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 37–42PubMedCrossRefGoogle Scholar
  35. Pedersen A. (1993) The Vegetation of the Wadden Sea islands in Denmark and Schleswig- Holstein. In: Wolff W.J. (eds), Ecology of the Wadden Sea Vol 9. Balkema, Rotterdam, pp. 137–165Google Scholar
  36. Ranwell D.S. (1967) World resources of Spartina townsendii (sensu lato) and economic use of Spartina marshland. J. Appl. Ecol. 4: 239–256CrossRefGoogle Scholar
  37. Reid P.C., Edwards M., Hunt H.G. and Warner A.J. (1998) Phytoplankton change in the North Atlantic. Nature 391: 256CrossRefGoogle Scholar
  38. Reid P.C., Holliday N.P. and Smyth T.J. (2001) Pulses in the eastern margin current and warmer water off the north west European shelf linked to North Sea ecosystem changes. Mar. Ecol. Prog. Ser. 215: 183–287CrossRefGoogle Scholar
  39. Reise K. and Lackschewitz D. (2003) Combating habitat loss at eroding Wadden Sea shores by sand replenishment. In: Wolff W.J., Essink K., Kellermann A., and van Leeuwe M.A. (eds), Challenges of the Wadden Sea. Proceedings of the 10th International Scientific Wadden Sea Symposium. Ministry of Agriculture, Nature Management and Fisheries, Groningen, pp. 197–206Google Scholar
  40. Root T.L., Price J.T., Hall K.R., Schneiders S.H., Rosenzweig C. and Pounds J.A. (2003) Fingerprints of global warming on wild animals and plants. Nature 421: 57–60PubMedCrossRefGoogle Scholar
  41. Straka H. (1963) Über die Veränderungen der Vegetation im nördlichen Teil der Insel Sylt in den letzten Jahrzehnten. Schriften des Naturwissenschaftlichen Vereins fÜr Schleswig-Holstein 34: 19–43Google Scholar
  42. Stock M.S., Gettner M., Hagge K., Heinzel J., Kohlus J. and Stumpe H. (2005) Salzwiesen an der Westküste von Schleswig-Holstein 1988–2001. Schriftenreihe des Nationalparks Schleswig-Holsteinisches Wattenmeer 15: 1–239Google Scholar
  43. Taylor M.C. and Burrows E.M. (1968) Studies on the biology of Spartina in the Dee Estuary. J. Ecol. 56: 795–809CrossRefGoogle Scholar
  44. Thompson J.D. (1991) The Biology of an Invasive plant. What makes Spartina anglica so successful? Bioscience 41(6): 393–401CrossRefGoogle Scholar
  45. Van Beusekom J.E.E., Fock H., de Jong F., Diel-Christiansen S. and Christiansen B. (2001) Wadden Sea Specific Eutrophication Criteria. Wadden Sea Ecosystem Vol. 14. Common Wadden Sea Secretariat, Wilhelmshaven, GermanyGoogle Scholar
  46. Van Beusekom J.E.E., Bot P., Göbel J., Hanslik M., Lenhart H.J., Pätsch J., Peperzak L., Petenati T. and Reise K. 2005. Eutrophication. In: Essink K., Dettmann C., Farke H., Laursen K., Lüerssen G., Marenic H. and Wiersinga W. (eds), Wadden Sea Quality Status Report 2004, Wadden Sea Ecosystem No. 19, Trilateral Monitoring and Assessment Group, Common Wadden Sea Secretariat, Wilhelmshaven, Germany.Google Scholar
  47. Walther G.R., Post E., Convey P., Menzel A., Parmesan C., Beebee T.J.C., Fromentin J.M., Hoeg-Guldberg O. and Bairlein F. (2002). Ecological response to recent climate change. Nature 416: 389–395PubMedCrossRefGoogle Scholar
  48. Wohlenberg E. (1953) Sinkstoff, Sediment und Anwachs am Hindenburgdamm. Küste 2: 33–91Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Martina Loebl
    • 1
  • Justus E. E. van Beusekom
    • 1
  • Karsten Reise
    • 1
  1. 1.Alfred-Wegener-Institute for Polar and Marine ResearchWadden Sea Station SyltListGermany

Personalised recommendations