Advertisement

Aquatic Ecology

, Volume 39, Issue 4, pp 381–400 | Cite as

The impact of climate change on lakes in the Netherlands: a review

  • Wolf M. Mooij
  • Stephan Hülsmann
  • Lisette N. De Senerpont Domis
  • Bart A. Nolet
  • Paul L. E. Bodelier
  • Paul C. M. Boers
  • L. Miguel Dionisio Pires
  • Herman J. Gons
  • Bas W. Ibelings
  • Ruurd Noordhuis
  • Rob Portielje
  • Kirsten Wolfstein
  • Eddy H. R. R. Lammens
Article

Abstract

Climate change will alter freshwater ecosystems but specific effects will vary among regions and the type of water body. Here, we give an integrative review of the observed and predicted impacts of climate change on shallow lakes in the Netherlands and put these impacts in an international perspective. Most of these lakes are man-made and have preset water levels and poorly developed littoral zones. Relevant climatic factors for these ecosystems are temperature, ice-cover and wind. Secondary factors affected by climate include nutrient loading, residence time and water levels. We reviewed the relevant literature in order to assess the impact of climate change on these lakes. We focussed on six management objectives as bioindicators for the functioning of these ecosystems: target species, nuisance species, invading species, transparency, carrying capacity and biodiversity. We conclude that climate change will likely (i) reduce the numbers of several target species of birds; (ii) favour and stabilize cyanobacterial dominance in phytoplankton communities; (iii) cause more serious incidents of botulism among waterfowl and enhance the spreading of mosquito borne diseases; (iv) benefit invaders originating from the Ponto-Caspian region; (v) stabilize turbid, phytoplankton-dominated systems, thus counteracting restoration measures; (vi) destabilize macrophyte-dominated clear-water lakes; (vii) increase the carrying capacity of primary producers, especially phytoplankton, thus mimicking eutrophication; (viii) affect higher trophic levels as a result of enhanced primary production; (ix) have a negative impact on biodiversity which is linked to the clear water state; (x) affect biodiversity by changing the disturbance regime. Water managers can counteract these developments by reduction of nutrient loading, development of the littoral zone, compartmentalization of lakes and fisheries management.

Keywords

Biodiversity Carrying capacity Invading species Nuisance species Temperature Transparency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The contribution of NIOO to this study was co-financed by a research grant from RIZA. We thank Ramesh Gulati for the invitation to write this review and his helpful comments on the manuscript. We also thank Don DeAngelis, Luis Santamaría, Matthijs Vos and three anonymous referees for their constructive comments on the manuscript. We thank Hugo Coops, Marcel Van Den Berg and Diederik Van Der Molen for their valuable input during the project meetings. We thank Albert Klein Tank and Günther Können of the KNMI for providing us with information on climate scenarios. This is publication 3591 of the NIOO-KNAW Netherlands Institute of Ecology.

References

  1. Abrams P.A. and Walters C.J. (1996). Invulnerable prey and the paradox of enrichment. Ecology 77:1125–1133Google Scholar
  2. Adrian R., Deneke R., Mischke U., Stellmacher R. and Lederer P. (1995). A long-term study of the Heiligensee (1975–1992). Evidence for effects of climatic change on the dynamics of eutrophied lake ecosystems. Arch. Hydrobiol. 133:315–337Google Scholar
  3. Adrian R., Walz N., Hintze T., Hoeg S. and Rusche R. (1999). Effects of ice duration on plankton succession during spring in a shallow polymictic lake. Freshwat. Biol. 41:621–632CrossRefGoogle Scholar
  4. Ahlgren G., Gustafsson I.B. and Boberg M. (1992). Fatty acid content and chemical composition of freshwater microalgae. J. Phycol. 28:37–50CrossRefGoogle Scholar
  5. Ahlstedt S.A. (1994). Invasions and impacts of the zebra mussel in the United States. Journal of Shellfish Research 13:330Google Scholar
  6. Anonymous (2000). A different approach to water management: water policy in the 21th century, Ministry of Transport, Public Works and Water ManagementGoogle Scholar
  7. Arditi R. and Ginzburg L.R. (1989). Coupling in predator prey dynamics: ratio-dependence. J. Theor. Biol. 139:311–326Google Scholar
  8. Austin G.E. and Rehfisch M.M. (2005). Shifting nonbreeding distributions of migratory fauna in relation to climatic change. Global Change Biology 11:31–38CrossRefGoogle Scholar
  9. Barras S.C. and Kadlec J.A. (2000). Abiotic predictors of avian botulism outbreaks in Utah. Wildl. Soc. Bull. 28:724–729Google Scholar
  10. Benndorf J., Kranich J., Mehner T. and Wagner A. (2001). Temperature impact on the midsummer decline of Daphnia galeata: an analysis of long-term data from the biomanipulated Bautzen Reservoir (Germany). Freshwat. Biol. 46:199–212CrossRefGoogle Scholar
  11. Bij de Vaate A., Jazdzewski K., Ketelaars H.A.M., Gollasch S. and Van der Velde G. (2002). Geographical patterns in range extension of Ponto-Caspian macroinvertebrate species in Europe. Can. J. Fish. Aquat. Sci. 59:1159–1174CrossRefGoogle Scholar
  12. Blenckner T. 2001. Climate related impacts on a lake: from physics to biology. PhD thesis, University Uppsala, UppsalaGoogle Scholar
  13. Blenckner T. (2005). A conceptual model of climate-related effects on lake ecosystems. Hydrobiologia 533:1–14CrossRefGoogle Scholar
  14. Bremigan M.T. and Stein R.A. (1994). Gape-dependent larval foraging and zooplankton size: Implications for fish recruitment across systems. Can. J. Fish. Aquat. Sci. 51:913–922Google Scholar
  15. Breukers C.P.M., Van Dam E.M. and De Jong S.A. (1997). Lake Volkerak-Zoom: a lake shifting from the clear to the turbid state. Hydrobiologia 342:367–376CrossRefGoogle Scholar
  16. Broekhuizen S., Hoekstra B., Van Laar V., Smeenk C. and Thissen J.B.M. (ed.) (1992). Atlas van de Nederlandse Zoogdieren. Stichting Uitgeverij KNNV, UtrechtGoogle Scholar
  17. Carrick H.J., Aldridge F.J. and Schelske C.L. (1993). Wind influences phytoplankton biomass and composition in a shallow, productive lake. Limnol. Oceanogr. 38:1179–1192Google Scholar
  18. Carvalho L. and Kirika A. (2003). Changes in shallow lake functioning: response to climate change and nutrient reduction. Hydrobiologia 506:789–796CrossRefGoogle Scholar
  19. Coops H. and Hosper S.H. (2002). Water-level management as a tool for the restoration of shallow lakes in the Netherlands. Lake and Reservoir Management 18:293–298Google Scholar
  20. Coops H., Vulink J.T. and van Nes E.H. (2004). Managed water levels and the expansion of emergent vegetation along a lakeshore. Limnologica 34:57–64Google Scholar
  21. Crooks J.A. (2002). Characterizing ecosystem-level consequences of biological invasions: the role of ecosystem engineers. Oikos 97:153–166CrossRefGoogle Scholar
  22. Cushing D.H. (1990). Plankton Production and Year-Class Strength in Fish Populations - an Update of the Match Mismatch Hypothesis. Advances in Marine Biology 26:249–293Google Scholar
  23. Davies C.M., Long J.A.H., Donald M. and Ashbolt N.J. (1995). Survival of fecal microorganisms in marine and fresh-water sediments. Applied and Environmental Microbiology 61:1888–1896PubMedGoogle Scholar
  24. Dawidowicz P., Gliwicz Z.M. and Gulati R.D. (1988). Can Daphnia prevent a blue-green algal bloom in hypertrophic lakes? A laboratory test. Limnologica (Berlin) 19:21–26Google Scholar
  25. De Leeuw J.J. (1997). Demanding divers: ecological energetics of food exploitation by diving ducks, Rijkswaterstaat, Directie IJsselmeergebied & Rijksuniversiteit Groningen, LelystadGoogle Scholar
  26. Dionisio Pires L.M., Brehm M., Ibelings B.W. and Van Donk E. 2005. Comparing grazing on lake seston by Dreissena and Daphnia: lessons for biomanipulation. Microb. Ecol. in pressGoogle Scholar
  27. Dorland C., Tol R.S.J. and Palutikof J.P. (1999). Vulnerability of the Netherlands and Northwest Europe to storm damage under climate change - A model approach based on storm damage in the Netherlands. Climatic Change 43:513–535CrossRefGoogle Scholar
  28. Drenner R.W. and Hambright K.D. (1999). Review: Biomanipulation of fish assemblages as a lake restoration technique. Arch. Hydrobiol. 146:129–165Google Scholar
  29. Dukes J.S. and Mooney H.A. (1999). Does global change increase the success of biological invaders? Trends Ecol. Evol. 14:135–139CrossRefPubMedGoogle Scholar
  30. Dyble J., Paerl H.W. and Neilan B.A. (2002). Genetic characterization of Cylindrospermopsis raciborskii (Cyanobacteria) isolates from diverse geographic origins based on nifH and cpcBA-IGS nucleotide sequence analysis. Applied and Environmental Microbiology 68:2567–2571PubMedGoogle Scholar
  31. Edwards M. and Richardson A.J. (2004). Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430:881–884CrossRefPubMedGoogle Scholar
  32. Elton C.S. (1958). The ecology of invasions by animals and plants. The University of Chicago Press, ChicagoGoogle Scholar
  33. George D.G. (2000). The impact of regional-scale changes in the weather on the long-term dynamics of Eudiaptomus and Daphnia in Esthwaite Water, Cumbria. Freshwat. Biol. 45:111–121CrossRefGoogle Scholar
  34. George D.G. and Harris G.P. (1985). The effect of climate on long-term changes in the crustacean zooplankton biomass of Lake Windermere, UK. Nature 316:536–539CrossRefGoogle Scholar
  35. George D.G., Maberly S.C. and Hewitt D.P. (2004). The influence of the North Atlantic Oscillation on the physical, chemical and biological characteristics of four lakes in the English Lake District. Freshwater Biology 49:760–774CrossRefGoogle Scholar
  36. Gerten D. and Adrian R. (2000). Climate-driven changes in spring plankton dynamics and the sensitivity of shallow polymictic lakes to the North Atlantic Oscillation. Limnol. Oceanogr. 45:1058–1066CrossRefGoogle Scholar
  37. Gerten D. and Adrian R. (2001). Differences in the persistency of the North Atlantic Oscillation signal among lakes. Limnol. Oceanogr. 46:448–455CrossRefGoogle Scholar
  38. Gerten D. and Adrian R. (2002a). Effects of climate warming, North Atlantic Oscillation, and El Nino-Southern Oscillation on thermal conditions and plankton dynamics in northern hemispheric lakes. TheScientificWorldJOURNAL 2:586–606CrossRefGoogle Scholar
  39. Gerten D. and Adrian R. (2002b). Species-specific changes in the phenology and peak abundance of freshwater copepods in response to warm summers. Freshwat. Biol. 47:2163–2173CrossRefGoogle Scholar
  40. Gliwicz Z.M. and Lampert W. (1990). Food thresholds in Daphnia species in the absence and presence of blue-green filaments. Ecology 71:691–702Google Scholar
  41. Gons H.J. and Rijkeboer M. (1990). Algal growth and loss rates in Lake Loosdrecht: first evaluation of the roles of light and wind on a basis of steady state kinetics. Hydrobiologia 191:129–138CrossRefGoogle Scholar
  42. Gons H.J., Otten J.H. and Rijkeboer M. (1991). The significance of wind resuspension for the predominance of filamentous cyanobacteria in a shallow, eutrophic lake. Mem. Ist. Ital. Idrobiol. 48:233–249Google Scholar
  43. Graham M. (1935). Modern theory of exploiting a fishery, and application to North Sea trawling. J. Cons. Perm. Int. Expl. Mer 10:264–274Google Scholar
  44. Gulati R.D. and Van Donk E. (2002). Lakes in the Netherlands, their origin, eutrophication and restoration: state-of-the-art review. Hydrobiologia 478:73–106CrossRefGoogle Scholar
  45. Gulati R.D., Siewertsen K. and Postema G. (1982). The zooplankton: its community structure, food and feeding, and role in the ecosystem of Lake Vechten. Hydrobiologia 95:127–163CrossRefGoogle Scholar
  46. Haagsma J. 1974. De etiologie en epidemiologie von botulisme bij watervogels. H2O 2: 26–30Google Scholar
  47. Haberman J. and Laugaste R. (2003). On characteristics reflecting the trophic state of large and shallow Estonian lakes (L. Peipsi, L. Vortsjarv). Hydrobiologia 506:737–744CrossRefGoogle Scholar
  48. Hanson M.A. and Butler M.G. (1994). Responses to food-web manipulation in a shallow waterfowl lake. Hydrobiologia 280:457–466CrossRefGoogle Scholar
  49. Harrington R., Woiwod I. and Sparks T. (1999). Climate change and trophic interactions. Trends Ecol. Evol. 14:146–150CrossRefPubMedGoogle Scholar
  50. Houghton J.T., Ding Y., Griggs D.J., Noguer M., Van der Linden P.J. and Xiaosu D. (ed.) (2001). Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, CambridgeGoogle Scholar
  51. Howard A. and Easthope M.P. (2002). Application of a model to predict cyanobacterial growth patterns in response to climatic change at Farmoor Reservoir, Oxfordshire, UK. Sci. Total Environ. 282:459–469CrossRefPubMedGoogle Scholar
  52. Hughes L. (2000). Biological consequences of global warming: is the signal already apparent? Trends Ecol. Evol. 15:56–61CrossRefPubMedGoogle Scholar
  53. Humphries S.E. and Lyne V.D. (1988). Cyanophyte blooms - the role of cell buoyancy. Limnol. Oceanogr. 33:79–91Google Scholar
  54. Ibelings B.W., Mur L.R., Kinsman R. and Walsby A.E. (1991). Microcystis changes its buoyancy in response to the average irradiance in the surface mixed layer. Arch. Hydrobiol. 120:385–401Google Scholar
  55. Ibelings B.W., Vonk M., Los H.F.J., van der Molen D.T. and Mooij W.M. (2003). Fuzzy modeling of cyanobacterial surface waterblooms: Validation with NOAA-AVHRR satellite images. Ecological Applications 13:1456–1472Google Scholar
  56. Jensen H.S. and Andersen F.O. (1992). Importance of temperature, nitrate, and pH for phosphate release from aerobic sediments of four shallow, eutrophic lakes. Limnol. Oceanogr. 37:577–589Google Scholar
  57. Jeppesen E., Sondergaard M. and Jensen J.P. (2003). Climatic warming and regime shifts in lake food webs - some comments. Limnol. Oceanogr. 48:1346–1349CrossRefGoogle Scholar
  58. Kennedy T.A., Naeem S., Howe K.M., Knops J.M.H., Tilman D. and Reich P. (2002). Biodiversity as a barrier to ecological invasion. Nature 417:636–638CrossRefPubMedGoogle Scholar
  59. Kilham S.S., Theriot E.C. and Fritz S.C. (1996). Linking planktonic diatoms and climate change in the large lakes of the Yellowstone ecosystem using resource theory. Limnol. Oceanogr. 41:1052–1062CrossRefGoogle Scholar
  60. Kisand V. and Noges T. (2004). Abiotic and biotic factors regulating dynamics of bacterioplankton in a large shallow lake. Fems Microbiology Ecology 50:51–62CrossRefPubMedGoogle Scholar
  61. Klein Tank A. 2004. Changing Temperature and Precipitation Extremes in Europe’s Climate of the 20th Century. Ph.D. Thesis, University of UtrechtGoogle Scholar
  62. Klein Tank A., Wijngaard J. and Van Engelen A. 2002. Climate of Europe. Assessment of observed daily temperature and precipitation extremes. European Climate Assessment (ECA)Google Scholar
  63. Kovacs A.W., Koncz E. and Voros L. (2003). Akinete abundance of N-2-fixing cyanobacteria in sediment of Lake Balaton (Hungary). Hydrobiologia 506:181–188CrossRefGoogle Scholar
  64. Lagos N., Onodera H., Zagatto P.A., Andrinolo D., Azevedo S.M.F.Q. and Oshima Y. (1999). The first evidence of paralytic shellfish toxins in the freshwater cyanobacterium Cylindrospermopsis raciborskii, isolated from Brazil. Toxicon 37:1359–1373PubMedGoogle Scholar
  65. Lake P.S., Palmer M.A., Biro P., Cole J., Covich A.P., Dahm C., Gibert J., Goedkoop W., Martens K. and Verhoeven J. (2000). Global change and the biodiversity of freshwater ecosystems: Impacts on linkages between above-sediment and sediment biota. BioScience 50:1099–1107Google Scholar
  66. Lammens E.H.R.R. 1999. Het voedselweb van IJsselmeer en Markermeer. Veldgegevens, hypotheses, modellen en scenario’s, Riza rapport 99.008Google Scholar
  67. Lammens E.H.R.R., De Nie H.W., Vijverberg J. and Van Densen W.L.T. (1985). Resource partitioning and niche shifts of bream (Abramis brama) and eel (Anguilla anguilla) mediated by predation of smelt (Osmerus eperlanus) on Daphnia hyalina. Can. J. Fish. Aquat. Sci. 42:1342–1351Google Scholar
  68. Lammens E.H.R.R. and Van den Berg M. (2001). Evaluation of the ecological condition of Lake Uluabat, RIZA, LelystadGoogle Scholar
  69. Lammens E.H.R.R., Van der Hut R., De Blois M. and Van Hoof P. (2001). The food web of IJsselmeer, the Netherlands: effects of nutrients, mussels and the fishery. Verh. Internat. Verein. Limnol. 27:3484–3487Google Scholar
  70. Lammens E.H.R.R., Van Nes E.H. and Mooij W.M. (2002). Differences in the exploitation of bream in three shallow lake systems and their relation to water quality. Freshwat. Biol. 47:2435–2442CrossRefGoogle Scholar
  71. Lensink R. (1996). The rise of exotic bird species in the Dutch avifauna: past, present and future. Limosa 69:103–130Google Scholar
  72. Liikanen A., Murtoniemi T., Tanskanen H., Vaisanen T. and Martikainen P.J. (2002). Effects of temperature and oxygen availability on greenhouse gas and nutrient dynamics in sediment of a eutrophic mid-boreal lake. Biogeochemistry 59:269–286CrossRefGoogle Scholar
  73. Loaiciga H.A., Valdes J.B., Vogel R., Garvey J. and Schwarz H. (1996). Global warming and the hydrologic cycle. J. Hydrol. 174:83–127CrossRefGoogle Scholar
  74. Lovvorn J.R. and Gillingham M.P. (1996). Food dispersion and foraging energetics: a mechanistic synthesis for field studies of avian benthivores. Ecology 77:435–451Google Scholar
  75. Makino W., Kato H., Takamura N., Mizutani H., Katano N. and Mikami H. (2001). Did chironomid emergence release Daphnia from fish predation and lead to a Daphnia-driven clear-water phase in Lake Towada, Japan? Hydrobiologia 442:309–317CrossRefGoogle Scholar
  76. Martens P. (1999). How will climate change affect human health? Am. Sci. 87:534–541CrossRefGoogle Scholar
  77. McAllister C.D., LeBrasseur R.J. and Parsons T.R. (1972). Stability of enriched systems. Science 175:562–564PubMedGoogle Scholar
  78. McCauley E. and Murdoch W.W. (1990). Predator prey dynamics in environments rich and poor in nutrients. Nature 343:455–457CrossRefGoogle Scholar
  79. McKee D., Atkinson D., Collings S., Eaton J., Harvey I., Heyes T., Hatton K., Wilson D. and Moss B. (2002a). Macro-zooplankter responses to simulated climate warming in experimental freshwater microcosms. Freshwat. Biol. 47:1557–1570CrossRefGoogle Scholar
  80. McKee D., Atkinson D., Collings S.E., Eaton J.W., Gill A.B., Harvey I., Hatton K., Heyes T., Wilson D. and Moss B. (2003). Response of freshwater microcosm communities to nutrients, fish, and elevated temperature during winter and summer. Limnol. Oceanogr. 48:707–722Google Scholar
  81. McKee D., Hatton K., Eaton J.W., Atkinson D., Atherton A., Harvey I. and Moss B. (2002b). Effects of simulated climate warming on macrophytes in freshwater microcosm communities. Aquat. Bot. 74:71–83CrossRefGoogle Scholar
  82. McNaughton S.J. (1977). Diversity and stability of ecological communities: a comment on the role of empiricism in ecology. Am. Nat. 111:515–525CrossRefGoogle Scholar
  83. Mehner T. (2000). Influence of spring warming on the predation rate of underyearling fish on Daphnia - a deterministic simulation approach. Freshwat. Biol. 45:253–264CrossRefGoogle Scholar
  84. Mehner T., Dörner H. and Schultz H. (1998). Factors determining the year-class strength of age-0 Eurasian perch (Perca fluviatilis, L.) in a biomanipulated reservoir. Arch. Fish. Mar. Res. 46:241–251Google Scholar
  85. Mehner T., Schultz H., Bauer D., Herbst R., Voigt H. and Benndorf J. (1996). Intraguild predation and cannibalism in age-0 perch (Perca fluviatilis) and age-0 zander (Stizostedion lucioperca) :Interactions with zooplankton succession and prey fish availability and temperature. Ann. Zool. Fenn. 33:353–361Google Scholar
  86. Meijer M.L. 2000. Biomanipulation in the Netherlands. 15 years of experience. Ph.D. thesis University of Wageningen: 206 ppGoogle Scholar
  87. Middlekoop H. 2000. The impact of climate change on the River Rhine and the Implications for Water Management in the Netherlands. RIZA, LelystadGoogle Scholar
  88. Moed J.R. and Hoogveld H.L. (1982). The algal periodicity in Tjeukemeer during 1968–1978. Hydrobiologia 95:223–224CrossRefGoogle Scholar
  89. Mooij W.M. (1996). Variation in abundance and survival of fish larvae in shallow eutrophic lake Tjeukemeer. Env. Biol. Fish. 46:265–279CrossRefGoogle Scholar
  90. Mooij W.M., Lammens E.H.R.R. and Van Densen W.L.T. (1994). Growth rate of 0+ fish in relation to temperature, body size, and food in shallow eutrophic Lake Tjeukemeer. Can. J. Fish. Aquat. Sci. 51:516–526CrossRefGoogle Scholar
  91. Mooij W.M. and Van Tongeren O.F.R. (1990). Growth of 0+ roach (Rutilus rutilus) in relation to temperature and size in a shallow eutrophic lake: comparison of field and laboratory observations. Can. J. Fish. Aquat. Sci. 47:960–967Google Scholar
  92. Moss B., Mckee D., Atkinson D., Collings S.E., Eaton J.W., Gill A.B., Harvey I., Hatton K., Heyes T. and Wilson D. (2003a). How important is climate? Effects of warming, nutrient addition and fish on phytoplankton in shallow lake microcosms. J. Appl. Ecol. 40:782–792CrossRefGoogle Scholar
  93. Moss B., Stephen D., Alvarez C., Becares E., Van de Bund W., Collings S.E., Van Donk E., De Eyto E., Feldmann T., Fernandez-Alaez C., Fernandez-Alaez M., Franken R.J.M., Garcia-Criado F., Gross E.M., Gyllstrom M., Hansson L.A., Irvine K., Jarvalt A., Jensen J.P., Jeppesen E., Kairesalo T., Kornijow R., Krause T., Kunnap H., Laas A., Lille E., Lorens B., Luup H., Miracle M.R., Noges P., Noges T., Nykanen M., Ott I., Peczula W., Peeters E., Phillips G., Romo S., Russell V., Salujoe J., Scheffer M., Siewertsen K., Smal H., Tesch C., Timm H., Tuvikene L., Tonno I., Virro T., Vicente E. and Wilson D. (2003b). The determination of ecological status in shallow lakes - a tested system (ECOFRAME) for implementation of the European Water Framework Directive. Aquatic Conservation-Marine and Freshwater Ecosystems 13:507–549CrossRefGoogle Scholar
  94. Moss B., Stephen D., Balayla D.M., Becares E., Collings S.E., Fernandez-Alaez C., Fernandez-Alaez M., Ferriol C., Garcia P., Goma J., Gyllstrom M., Hansson L.A., Hietala J., Kairesalo T., Miracle M.R., Romo S., Rueda J., Russell V., Stahl-Delbanco A., Svensson M., Vakkilainen K., Valentin M., Van de Bund W.J., Van Donk E., Vicente E. and Villena M.J. (2004). Continental-scale patterns of nutrient and fish effects on shallow lakes: synthesis of a pan-European mesocosm experiment. Freshwat. Biol. 49:1633–1649CrossRefGoogle Scholar
  95. Müller-Navarra D.C., Guss S. and Von Storch H. (1997). Interannual variability of seasonal succession events in a temperate lake and its relation to temperature variability. Global Change Biology 3:429–438CrossRefGoogle Scholar
  96. Murphy T., Lawson A., Nalewajko C., Murkin H., Ross L., Oguma K. and McIntyre T. (2000). Algal toxins - Initiators of avian botulism? Environ. Toxicol. 15:558–567Google Scholar
  97. Naeem S. and Li S. (1997). Biodiversity enhances ecosystem reliability. Nature 390:507 – 509CrossRefGoogle Scholar
  98. Naeem S., Thompson L.J., Lawler S.P., Lawton J.H. and Woodfin R.M. 1994. Declining biodiversity can alter the performance of ecosystems. Nature 368Google Scholar
  99. Naiman R.J. and Turner M.G. (2000). A future perspective on North America’s freshwater ecosystems. Ecol. Appl. 10:958–970Google Scholar
  100. Nienhuis P.H. and Gulati R.D. (ed.) (2002). Ecological restoration of aquatic and semi-aquatic ecosystems in the Netherlands. Developments in Hydrobiology 166, Kluwer Academic Publishers, DordrechtGoogle Scholar
  101. Noges T., Haberman J., Jaani A., Laugaste R., Lokk S., Maemets A., Noges P., Pihu E., Starast H., Timm T. and Virro T. (1996). General description of Lake Peipsi-Pihkva. Hydrobiologia 338:1–9CrossRefGoogle Scholar
  102. Noges T., Noges P. and Laugaste R. (2003). Water level as the mediator between climate change and phytoplankton composition in a large shallow temperate lake. Hydrobiologia 506:257–263CrossRefGoogle Scholar
  103. Nolet B.A., Langevoord O., Bevan R.M., Engelaar K.R., Klaassen M., Mulder R.J.W. and Van Dijk S. (2001). Spatial variation in tuber depletion by swans explained by differences in net intake rates. Ecology 82:1655–1667CrossRefGoogle Scholar
  104. Nyberg P., Bergstrand E., Degerman E. and Enderlein O. (2001). Recruitment of pelagic fish in an unstable climate: Studies in Sweden’s four largest lakes. Ambio 30:559–564PubMedGoogle Scholar
  105. Ohtani I., Moore R.E. and Runnegar M.T.C. (1992). Cylindrospermopsin - a potent hepatotoxin from the blue-green- alga Cylindrospermopsis raciborskii. J. Am. Chem. Soc. 114:7941–7942CrossRefGoogle Scholar
  106. Oldenborgh G. and van Ulden A. (2003). On the relationship between global warming, local warming in the Netherlands and changes in circulation in the 20th century. KNMI, De Bilt, The NetherlandsGoogle Scholar
  107. Osieck E.R. and Hustings F. (1994). Rode lijst van bedreigde soorten en blauwe lijst van belangrijke soorten in Nederland, Vogelbescherming Nederland, ZeistGoogle Scholar
  108. Parmesan C. and Yohe G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42PubMedGoogle Scholar
  109. Parry M.L. (ed.) 2000. Assessment of potential effects and adaptations for climate change in Europe: the Europe ACACIA project. Jackson Environment Institute, University of East Anglia, Norwich, UKGoogle Scholar
  110. Pel R., Floris V., Gons H.J. and Hoogveld H.L. (2004). Linking flow cytometric cell sorting and compound-specific C-13-analysis to determine population-specific isotopic signatures and growth rates in cyanobacteria-dominated lake plankton. Journal of Phycology 40:857–866CrossRefGoogle Scholar
  111. Perry M.C. and Uhler F.M. (1988). Food-Habits and Distribution of Wintering Canvasbacks, Aythya valisineria, on Chesapeake Bay. Estuaries 11:57–67Google Scholar
  112. Petrie S.A. and Knapton R.W. (1999). Rapid increase and subsequent decline of zebra and quagga mussels in Long Point Bay, Lake Erie: Possible influence of waterfowl predation. J. Great Lakes Res. 25:772–782Google Scholar
  113. Porter K.G., Saunders P.A., Haberyan K.A., Macubbin A.E., Jacobsen T.R. and Hodson R.E. (1996). Annual cycle of autotrophic and heterotrophic production in a small, monomictic Piedmont lake (Lake Oglethorpe): Analog for the effects of climatic warming on dimictic lakes. Limnol. Oceanogr. 41:1041–1051CrossRefGoogle Scholar
  114. Portielje R., Noordhuis R., Poole and Meijer M.L. (2001). Waterkwaliteit van de Zuidelijke Randmeren (Eem- en Gooimeer) 1990–1999. RIZA, LelystadGoogle Scholar
  115. Portielje R. and Rijsdijk R.E. (2003). Stochastic modelling of nutrient loading and lake ecosystem response in relation to submerged macrophytes and benthivorous fish. Freshwat. Biol. 48:741–755CrossRefGoogle Scholar
  116. Portielje R. and Van der Molen D.T. (1998). Trend-analysis of eutrophication variables in lakes in The Netherlands. Wat. Sc. Tech. 37 (3):235–240CrossRefGoogle Scholar
  117. Purvis A. and Hector A. (2000). Getting the measure of biodiversity. Nature 405:212–219CrossRefPubMedGoogle Scholar
  118. Reeders H.H., Boers P.C.M., Van der Molen D.T. and Helmerhorst T.H. (1998). Cyanobacterial dominance in the lakes Veluwemeer and Wolderwijd, The Netherlands. Wat. Sc. Tech. 37:85–92CrossRefGoogle Scholar
  119. Reynolds C.S. (1997). Vegetation processes in the pelagic: a model for ecosystem theory. Ecology Institute, Oldendorf/LuheGoogle Scholar
  120. Ricciardi A. and Maclsaac H.J. (2000). Recent mass invasion of the North American Great Lakes by Ponto-Caspian species. Trends Ecol. Evol. 15:62–65CrossRefPubMedGoogle Scholar
  121. Ricciardi A. and Rasmussen J.B. (1999). Extinction rates of North American freshwater fauna. Conserv. Biol. 13:1220–1222CrossRefGoogle Scholar
  122. Rijkeboer M., De Bles F. and Gons H.J. (1991). Role of sestonic detritus as a P-buffer. Mem. Ist. Ital. Idrobiol. 48:251–260Google Scholar
  123. Robarts R.D. and Zohary T. (1987). Temperature effects on photosynthetic capacity, respiration and growth rates of bloom-forming cyanobacteria. New Zealand Journal of Marine and Freshwater Research 21:391–399Google Scholar
  124. Rocke T.E., Euliss N.H. and Samuel M.D. (1999). Environmental characteristics associated with the occurrence of avian botulism in wetlands of a northern California refuge. J. Wildl. Manage. 63:358–368Google Scholar
  125. Rosenzweig M.L. (1971). Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science 171:385–387PubMedGoogle Scholar
  126. Sala O.E., Chapin F.S., Armesto J.J., Berlow E., Bloomfield J., Dirzo R., Huber-Sanwald E., Huenneke L.F., Jackson R.B., Kinzig A., Leemans R., Lodge D.M., Mooney H.A., Oesterheld M., Poff N.L., Sykes M.T., Walker B.H., Walker M. and Wall D.H. (2000). Biodiversity - Global biodiversity scenarios for the year 2100. Science 287:1770–1774CrossRefPubMedGoogle Scholar
  127. Sayler R.D. and Afton A.D. (1981). Ecological aspects of Common Goldeneyes Bucephala clangula wintering on the upper Mississippi River. Ornis Scandinavia 12:99–108Google Scholar
  128. Scheffer M. (1998). Ecology of shallow lakes. Chapman & Hall, LondonGoogle Scholar
  129. Scheffer M., Carpenter S., Foley J.A., Folke C. and Walker B. (2001a). Catastrophic shifts in ecosystems. Nature 413:591–596CrossRefGoogle Scholar
  130. Scheffer M., Hosper S.H., Meijer M.L., Moss B. and Jeppesen E. (1993). Alternative equilibria in shallow lakes. Trends Ecol. Evol. 8:275–279CrossRefGoogle Scholar
  131. Scheffer M., Straile D., Van Nes E.H. and Hosper H. (2001b). Climatic warming causes regime shifts in lake food webs. Limnol. Oceanogr. 46:1780–1783CrossRefGoogle Scholar
  132. Schelske C.L., Carrick H.J. and Aldridge F.J. (1995). Can wind-induced resuspension of meroplankton affect phytoplankton dynamics? J. N. Am. Benthol. Soc. 14:616–630Google Scholar
  133. Scott D.A. and Rose P.M. 1996. Atlas of Anatidae populations in Africa and Western EurasiaGoogle Scholar
  134. Shapiro J. (1997). The role of carbon dioxide in the initiation and maintenance of blue-green dominance in lakes. Freshwat. Biol. 37:307–323CrossRefGoogle Scholar
  135. Smolders A.J.P., Lamers L.P.M., den Hartog C. and Roelofs J.G.M. (2003). Mechanisms involved in the decline of Stratiotes aloides L. in The Netherlands: sulphate as a key variable. Hydrobiologia 506:603–610CrossRefGoogle Scholar
  136. Sommer U., Gliwicz Z.M., Lampert W. and Duncan A. (1986). The PEG-model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol. 106:433–471Google Scholar
  137. Specziar A. and Biro P. (1998). Spatial distribution and short-term changes of benthic macrofauna in Lake Balaton (Hungary). Hydrobiologia 389:203–216CrossRefGoogle Scholar
  138. Stenstrom T.A. and Carlander A. (2001). Occurrence and die-off of indicator organisms in the sediment in two constructed wetlands. Wat. Sc. Tech. 44:223–230PubMedGoogle Scholar
  139. Stoeckmann A.M. and Garton D.W. (2001). Flexible energy allocation in zebra mussels (Dreissena polymorpha) in response to different environmental conditions. J. N. Am. Benthol. Soc. 20:486–500Google Scholar
  140. Straile D. (2000). Meteorological forcing of plankton dynamics in a large and deep continental European lake. Oecologia 122:44–50Google Scholar
  141. Straile D. (2002). North Atlantic Oscillation synchronizes food-web interactions in central European lakes. Proc. R. Soc. Lond. B Biol. Sci. 269:391–395CrossRefGoogle Scholar
  142. Straile D. and Adrian R. (2000). The North Atlantic Oscillation and plankton dynamics in two European lakes - two variations on a general theme. Global Change Biology 6:663–670CrossRefGoogle Scholar
  143. Strayer D.L., Caraco N.F., Cole J.J., Findlay S. and Pace M.L. (1999). Transformation of freshwater ecosystems by bivalves - A case study of zebra mussels in the Hudson River. BioScience 49:19–27Google Scholar
  144. Suter W. and Van Eerden M.R. (1992). Simultaneous mass starvation of wintering diving ducks in Switserland and the Netherlands: A wrong decision in the right strategy? Ardea 80:229–242Google Scholar
  145. Thomas C.D., cameron A., Green R.E., Bakkenes M., Beaumont L.J., Collingham Y.C., Erasmus B.F.N., Ferreira de Siqueira M., Grainger A., Hannah L., Hughes L., Huntley B., S. V.J.A., Midgley G.F., Miles L., Ortega-Huerta M.A., Peterson A.T., Phillips O.L. and Willams S.E. (2004). Extinction risk from climate change. Nature 427:145 – 148CrossRefPubMedGoogle Scholar
  146. Van de Bund W.J., Romo S., Villena M.J., Valentin M., Van Donk E., Vicente E., Vakkilainen K., Svensson M., Stephen D., Stahl-Delbanco A., Rueda J., Moss B., Miracle M.R., Kairesalo T., Hansson L.A., Hietala J., Gyllstrom M., Goma J., Garcia P., Fernandez-Alaez M., Fernandez-Alaez C., Ferriol C., Collings S.E., Becares E., Balayla D.M. and Alfonso T. (2004). Responses of phytoplankton to fish predation and nutrient loading in shallow lakes: a pan-European mesocosm experiment. Freshwat. Biol. 49:1608–1618CrossRefGoogle Scholar
  147. Van de Bund W.J. and Van Donk E. (2002). Short-term and long-term effects of zooplanktivorous fish removal in a shallow lake: a synthesis of 15 years of data from Lake Zwemlust. Freshwat. Biol. 47:2380–2387CrossRefGoogle Scholar
  148. Van den Berg M.S., Scheffer M., Van Nes E. and Coops H. (1999). Dynamics and stability of Chara sp. and Potamogeton pectinatus in a shallow lake changing in eutrophication level. Hydrobiologia 408/409:335–342CrossRefGoogle Scholar
  149. Van der Molen D.T., Breeuwsma A. and Boers P.C.M. (1998). Agricultural nutrient losses to surface water in the Netherlands. Journal of Environmental Quality 27:4–11CrossRefGoogle Scholar
  150. Van der Molen D.T. and Portielje R. (1999). Multi-lake studies in The Netherlands: trends in eutrophication. Hydrobiologia 409:359–365CrossRefGoogle Scholar
  151. Van Donk E., Grimm M.P., Gulati R.D. and Breteler J.P.G.K. (1990). Whole-lake food-web manipulation as a means to study community interactions in a small ecosystem. Hydrobiologia 200/201:275–289Google Scholar
  152. Van Donk E., Mooij W.M. and Santamaria L. (2003). Climate warming causes regime shifts in lake food webs: a reassessment. Limnol. Oceanogr. 48:1350–1353Google Scholar
  153. Van Eerden M.R. and Lammens E.H.R.R. (2001). De meren Peipsi/Pihkva en Võrtsjärv als referentie voor het IJsselmeergebied, RIZA, LelystadGoogle Scholar
  154. Vijverberg J. and Boersma M. (1997). Long-term dynamics of small-bodied and large-bodied cladocerans during the eutrophication of a shallow reservoir, with special attention for Chydorus sphaericus. Hydrobiologia 360:233–242CrossRefGoogle Scholar
  155. Vinebrooke R.D., Cottingham K.L., Norberg J., Scheffer M., I. Dodson S., C. Maberly S. and Sommer U. (2004). Impacts of multiple stressors on biodiversity and ecosystem functioning: the role of species co-tolerance. Oikos 104:451–457CrossRefGoogle Scholar
  156. Visser M.E., Van Noordwijk A.J., Tinbergen J.M. and Lessells C.M. (1998). Warmer springs lead to mistimed reproduction in great tits (Parus major). Proc. R. Soc. Lond. B Biol. Sci. 265:1867–1870CrossRefGoogle Scholar
  157. Wacker A. and von Elert E. (2001). Polyunsaturated fatty acids: evidence for non-substitutable biochemical resources in Daphnia galeata. Ecology 82:2507–2520Google Scholar
  158. Wagner A., Hülsmann S., Dörner H., Janssen M., Kahl U., Mehner T. and Benndorf J. (2004). Initiation of the midsummer decline of Daphnia as related to predation, non-consumptive mortality and recruitment: a balance. Archiv für Hydrobiologie 160:1–23CrossRefGoogle Scholar
  159. Walther G.-R., Post E., Convey P., Menzel A., Parmesan C., Beebee T.J.C., Fromentin J.-M., Hoegh-Guldberg O. and Bairlein F. (2002). Ecological responses to recent climate change. Nature 416:389–395CrossRefPubMedGoogle Scholar
  160. Weyhenmeyer G.A., Blenckner T. and Pettersson K. (1999). Changes of the plankton spring outburst related to the North Atlantic Oscillation. Limnol. Oceanogr. 44:1788–1792CrossRefGoogle Scholar
  161. Williamson J.L., Rocke T.E. and Aiken J.M. (1999). In situ detection of the Clostridium botulinum type C-1 toxin gene in wetland sediments with a nested PCR assay. Applied and Environmental Microbiology 65:3240–3243PubMedGoogle Scholar
  162. Winder M. and Schindler D.E. (2004a). Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85:2100–2106Google Scholar
  163. Winder M. and Schindler D.E. (2004b). Climatic effects on the phenology of lake processes. Global Change Biology 10:1844–1856CrossRefGoogle Scholar
  164. Yachi S. and Loreau M. (1999). Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proc. Nat. Acad. Sci. USA 96:1463–1468CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Wolf M. Mooij
    • 1
  • Stephan Hülsmann
    • 1
    • 3
  • Lisette N. De Senerpont Domis
    • 1
  • Bart A. Nolet
    • 1
  • Paul L. E. Bodelier
    • 1
  • Paul C. M. Boers
    • 2
  • L. Miguel Dionisio Pires
    • 1
  • Herman J. Gons
    • 1
  • Bas W. Ibelings
    • 1
  • Ruurd Noordhuis
    • 2
  • Rob Portielje
    • 2
  • Kirsten Wolfstein
    • 2
  • Eddy H. R. R. Lammens
    • 2
  1. 1.NIOO-KNAW, Centre for LimnologyNieuwersluisThe Netherlands
  2. 2.RIZALelystadThe Netherlands
  3. 3.Insititute of Hydrobiology, DresdenUniversity of TechnologyDresdenGermany

Personalised recommendations