Aquatic Ecology

, Volume 40, Issue 4, pp 463–479 | Cite as

Basics and principles of particle image velocimetry (PIV) for mapping biogenic and biologically relevant flows



Particle image velocimetry (PIV) has proven to be a very useful technique in mapping animal-generated flows or flow patterns relevant to biota. Here, theoretical background is provided and experimental details of 2-dimensional digital PIV are explained for mapping flow produced by or relevant to aquatic biota. The main principles are clarified in sections on flow types, seeding, illumination, imaging, repetitive correlation analysis, post-processing and result interpretation, with reference to experimental situations. Examples from the benthic environment, namely, on filter feeding in barnacles and in bivalves, illustrate what the experiments comprise and what the results look like. Finally, alternative particle imaging flow analysis techniques are discussed briefly in the context of mapping biogenic and biologically relevant flows.

Key words

Benthic boundary layer BIOFLOW Biogenic flows Flow analysis PIV 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adrian R.J. (1991). Particle imaging techniques for experimental fluid mechanics. Ann. Rev. Fluid Mech. 23: 261–304CrossRefGoogle Scholar
  2. Anderson J.D. (2000). Introduction to Flight. McGraw-Hill, BostonGoogle Scholar
  3. Bastiaans R.J.M., der Plas G.A.J. and Kieft R.N. (2002). The performance of a new PTV algorithm in super-resolution PIV. Exp. In Fluids 32: 346–356CrossRefGoogle Scholar
  4. Cowen E.A. and Monismith S.G. (1997). A hybrid digital particle tracking velocimetry technique. Exp. In Fluids 22: 199–211CrossRefGoogle Scholar
  5. Drucker E.G. and Lauder G.V. (1999). Locomotor forces on a swimming fish: three-dimensional wake dynamics quantified using digital particle image velocimetry. J. Exp. Biol. 202: 2393–2412PubMedGoogle Scholar
  6. Luttikhuizen P. and Goey P. (1998). J. Exp. Mar. Biol. Ecol. 228: 327–337CrossRefGoogle Scholar
  7. Hart D.P. (1999). Super-resolution PIV by recursive local-correlation. J. Visualisation 10: 1–10Google Scholar
  8. Hermann S., Hinrichs H., Hinsch K. and Surmann C. (2000). Coherence concepts in holographic particle image velocimetry. Exp. In Fluids 29(Suppl.): S108–S116CrossRefGoogle Scholar
  9. Hinsch K.D. (1993). Particle image velocimetry. In: Sirohi, R.S. (eds) Speckle Metrology, pp 235–342. Marcel Dekker Inc, New YorkGoogle Scholar
  10. Joergensen C.B. (1975). On gill function in the mussel Mytilus edulis L. Ophelia 13: 187–232Google Scholar
  11. Jones J.D.C.(eds) 1997. Particle image velocimetry. Meas. Sci. Technol. 8(12): 1379–1583.Google Scholar
  12. Kamermans P. (1994). Similarity in food source and timing of feeding in deposit- and suspension-feeding bivalves. Mar. Ecol. Prog. Ser. 104: 63–75Google Scholar
  13. Keane R.D. and Adrian R.J. (1992). Theory of cross-correlation analysis of PIV images. Appl. Sci. Res. 49: 191–215CrossRefGoogle Scholar
  14. Keane R.D., Adrian R.J. and Zhang Y. (1995). Super-resolution particle image velocimetry. Meas. Sci. Technol. 6: 754–768CrossRefGoogle Scholar
  15. Klank H.G., Goranovic G., Kutter J.P., Gjelstrup H., Michelsen J. and Westergaard C.H. (2001). Micro PIV measurements in micro cell sorters and mixing structures with three dimensional flow behavior. CD-ROM proceedings 4th Int. Symp. on PIV, Göttingen, Paper, 1–12Google Scholar
  16. Larsen P.S. and Riisgård H.U. (2002). On ciliary sieving in pumping bryozoans. J. Sea Res. 48: 181–195CrossRefGoogle Scholar
  17. Lighthill J. (1986). An Informal Introduction to Theoretical Fluid Mechanics. Oxford University Press, OxfordGoogle Scholar
  18. Malkiel E., Sheng J., Katz J. and Strickler J.R. (2003). The three-dimensional flow field generated by a feeding calanoid copepod measured using digital holography. J. Exp. Biol. 206: 3657–3666PubMedCrossRefGoogle Scholar
  19. Müller U.K., den Heuvel B.L.E., Stamhuis E.J. and Videler J.J. (1997). Fish foot 23 prints: morphology and energetics of the wake behind a continuously swimming mullet (Chelon labrosus- Risso). J. Exp. Biol. 200: 2893–2906Google Scholar
  20. Raffel M., Willert C. and Kompenhans J. (1998). Particle Image Velocimetry, A Practical Guide. Springer-Verlag, BerlinGoogle Scholar
  21. Riisgaard H.U. and Kamermans P. (2001). Switching between deposit and suspension feeding in coastal zoobenthos. In: Reise, K. (eds) Ecological Comparisons of Sedimentary Shores. Ecological Studies Vol. 151, pp 73–101. Springer Verlag, BerlinGoogle Scholar
  22. Spedding G.R. (1986). wake of a Jackdaw (Corvus monedula) in slow flight. J. Exp. Biol. 125: 287–307Google Scholar
  23. Spedding G.R. and Rignot E.J.M. (1993). Performance analysis and application of grid interpolation techniques for fluid flows. Exp. In Fluids 15: 417–430Google Scholar
  24. Spedding G.R., Hedenström A. and Rosén M. 2003. Quantitative studies of the wakes of freely flying birds in a low-turbulence wind tunnel. Exp. In Fluids (in press)Google Scholar
  25. Sponaugle S. (1991). Flow patterns and velocities around a suspension-feeding gorgonian polyp: evidence from physical models. J. Exp. Mar. Biol. Ecol. 148: 135–145CrossRefGoogle Scholar
  26. Stamhuis E.J. and Videler J.J. (1995). Quantitative flow analysis around aquatic animals using laser sheet particle image velocimetry. J. Exp. Biol. 198: 283–294PubMedGoogle Scholar
  27. Stamhuis E.J., Videler J.J. and Müller U.K. (2002). Exp. In Fluids 33: 801–813Google Scholar
  28. (2000). Particle Image Velocimetry, Progress Towards Industrial Application. Kluwer Academic Publishers, LondonGoogle Scholar
  29. Strathmann R. (1973). Function of lateral cilia in suspension feeding of lophophorates (Brachiopoda, Phoronida, Ectoprocta). Mar. Biol. 23: 129–136CrossRefGoogle Scholar
  30. der Plas G.J. and Bastiaans R.J.M. (1998). Accuracy and resolution of a fast PTV- algorithm suitable for HiRes-PV. In: Grant, I. and Carlomagno, G.M. (eds) Proceedings of the 8th International Symposium on Flow Visualisation, pp 1/1–1/12. Sorrento, ItalyGoogle Scholar
  31. Stamhuis E.J. and Videler J.J. (1998). Reading the copepods personal ads: increasing encounter probability with hydromechanical signals. Phil. Trans. R. Soc. Lond. B 353: 691–700CrossRefGoogle Scholar
  32. Vogel S. and LaBarbera M. (1978). Simple flow tanks for research and teaching. Bioscience 28: 638–643CrossRefGoogle Scholar
  33. Vogel S. (1994). Life in Moving Fluids, the Physical Biology of Flow (2nd ed.). Princeton Press, New JerseyGoogle Scholar
  34. Vollmers H., Kreplin H.-P. and Meier H.U. 1983. Separation and vortical-type flow around a prolate spheroid – evaluation of relevant parameters. NATO-AGARD Conference Proceedings No. 342, pp. 14/1 – 14/14Google Scholar
  35. Vollmers H. (2001). Detection of vortices and quantitative evaluation of their main parameters from experimental velocity data. Meas. Sci. Technol. 12: 1199–1207CrossRefGoogle Scholar
  36. Westerweel J. (1993). Digital Particle Image Velocimetry – Theory and Application. Delft University Press, DelftGoogle Scholar
  37. Westerweel J. (1997). Fundamentals of digital PIV. Meas. Sci. Technol. 8(12): 1379–1392CrossRefGoogle Scholar
  38. Westerweel J., Dabiri D. and Gharib M. (1997). The effect of a discrete window offset on the accuracy of cross-correlation analysis of PIV recordings. Exp. In Fluids 23: 20–28CrossRefGoogle Scholar
  39. Willert C.E. and Gharib M. (1991). Digital particle image velocimetry. Exp. In Fluids 10: 181–193CrossRefGoogle Scholar
  40. Zirbel M.J., Veron F. and Latz M.I. (2000). The reversible effect of flow on the morphology of Ceratocorys horrida (Peridiniales, Dinophyta). J. Phycol. 36: 46–58CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Department of Marine BiologyUniversity of GroningenHarenThe Netherlands

Personalised recommendations