Aquatic Ecology

, Volume 39, Issue 2, pp 201–211 | Cite as

Responses of growth and phlorotannins in Fucus vesiculosus to nutrient enrichment and herbivory

  • Anne Hemmi
  • Anita Mäkinen
  • Veijo Jormalainen
  • Tuija Honkanen


Discharge from anthropogenic sources may modify both macroalgal growth patterns and resource allocation to carbon based secondary compounds, thereby affecting their susceptibility for herbivory. We tested the effect of eutrophication in terms of nutrient enhancement on growth and phlorotannin concentration of Fucus vesiculosus by conducting manipulative experiments in the field and mesocosms. In the field experiment we utilised fish farms as nutrient sources and in the mesocosm-experiment we manipulated ambient nutrient levels and occurrence of the herbivorous isopod Idotea baltica. Vicinity of a fish farm affected neither growth nor the phlorotannin concentration of Fucus but increased the amount of epiphytes growing on Fucus. Other organisms such as epiphytic filamentous algae and periphyton, which are more capable of quickly utilizing excess nutrients, may restrain the direct effects of nutrient enhancement on Fucus. In a manipulative mesocosm experiment, neither nutrient enrichment nor occurrence of herbivores affected phlorotannin concentration implying lack of induced defences, at least in terms of increasing phlorotannin concentration. Feeding of thallus decreased the growth rate of algae, but the number of reproductive organs, receptacles, was not affected by herbivory. The negative effect of herbivory on the amount of apical tips tended to be stronger under nutrient enriched conditions. We conclude that eutrophication processes, in terms of nutrient enrichment, does not have strong direct effect on growth or phlorotannin production of F. vesiculosus. However, there may be important indirect consequences. First, herbivory may be targeted more to apical parts of the thallus under eutrophicated conditions. Second, the result that Fucus growing close to nutrient sources were smaller than those in control areas may reflect differences in mortality schedules of algae between eutrophicated and control areas.


Eutrophication Fish farming Fucus vesiculosus Herbivory Idotea baltica Phlorotannins 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnold, T.M., Targett, N.M. 2003To grow and defend: lack of tradeoffs for brown algal phlorotanninsOikos100406408CrossRefGoogle Scholar
  2. Bryant, J.P., Chapin, F.S.,III, Klein, D.R. 1983Carbon/nutrient balance of boreal plants in relation to vertebrate herbivoryOecologia86202209Google Scholar
  3. Carlson, L. 1991Seasonal variation in growth reproduction and nitrogen content of Fucus vesiculosus L. in the Øresund southern SwedenBot. Mar34447453Google Scholar
  4. Cronin, G., Hay, M.E. 1996Effects of light and nutrient availability on the growth secondary chemistry and resistance to herbivory of two brown seaweedsOikos7793106Google Scholar
  5. Gowen, R.J., Bradbury, N.B. 1987The ecological impact of salmonid farming in coastal waters: a reviewOceanogr. Mar. Biol. Annu. Rev25563575Google Scholar
  6. Havens, K.E., East, T.L., Rodusky, A.J., Sharfstein, B. 1999Littoral periphyton responses to nitrogen and phosphorus: an experimental study in a subtropical lakeAquat. Bot63267290CrossRefGoogle Scholar
  7. Hemmi, A., Jormalainen, V. 2002Nutrient enhancement increases performance of a marine herbivore via quality of its food algaEcology8310521064Google Scholar
  8. Hemmi, A., Honkanen, T., Jormalainen, V. 2004Inducible resistance to herbivory in Fucus vesiculosus – duration, spreading and variation with nutrient availabilityMar. Ecol. Progr. Ser273109120Google Scholar
  9. Herms, D.A., Mattson, W.J. 1992The dilemma of plants: to grow or defendQ. Rev. Biol67283335CrossRefGoogle Scholar
  10. Honkanen, T., Helminen, H. 2000Impacts of fish farming on eutrophication: comparisons among different characteristics of ecosystemInt. Rev. Hydrobiol85673686CrossRefGoogle Scholar
  11. Honkanen, T., Jormalainen, V., Hemmi, A., Mäkinen, A., Heikkilä, N. 2002Feeding and growth of the isopod Idotea baltica on the brown alga Fucus vesiculosus: roles of inter-population and within-plant variation in plant qualityEcoscience9332338Google Scholar
  12. Ilvessalo, H., Tuomi, J. 1989Nutrient availability and accumulation of phenolic compounds in the brown alga Fucus vesiculosusMar. Biol101115119CrossRefGoogle Scholar
  13. Jormalainen, V., Honkanen, T., Mäkinen, A., Hemmi, A., Vesakoski, O. 2001Why does herbivore sex matter? Sexual differences in utilization of Fucus vesiculosus by the isopod Idotea balticaOikos937786CrossRefGoogle Scholar
  14. Jormalainen, V., Honkanen, T., Koivikko, R., Eränen, J. 2003Induction of phlorotannin production in a brown alga: defense or resource dynamics?Oikos103640650CrossRefGoogle Scholar
  15. Kangas, P., Autio, H., Hällfors, G., Luther, H., Niemi, Å., Salemaa, H. 1982A general model of the decline of Fucus vesiculosus at Tvärminne south coast of Finland in 1977–1981Acta Bot. Fenn118127Google Scholar
  16. Kautsky, N., Kautsky, H., Kautsky, U., Wærn, M. 1986Decreased depth penetration of Fucus vesiculosus L. since the 1940’s indicate eutrophication in the Baltic SeaMar. Ecol. Proc. Ser2818Google Scholar
  17. Lehvo, A., Bäck, S., Kiirikki, M. 2001Growth of Fucus vesiculosus L. (Phaeophyta) in the Northern Baltic Proper: energy and nitrogen storage in seasonal environmentBot. Mar44345350CrossRefGoogle Scholar
  18. Littell, R.C., Milligen, G.A., Stroup, W.W., Wolfinger, R.D. 1996SAS system for mixed modelsSAS InstituteCaryNorth CarolinaUSAGoogle Scholar
  19. Lotze, H.K., Schramm, W. 2000Ecophysiological traits explain species dominance patterns in macroalgal bloomsJ. Phycol36287295CrossRefGoogle Scholar
  20. Mattila, J., Räisänen, R. 1998Periphyton growth as an indicator of eutrophication: an experimental approachHydrobiologia3771523CrossRefGoogle Scholar
  21. Menge, B.A., Daley, B.A., Wheeler, P.A., Dahlhoff, E., Sanford, E., Strub, P.T. 1997Benthic pelagic links and rocky intertidal communities: bottom-up effects or top-down control?Proc. Natl. Acad. Sci. USA941453014535CrossRefPubMedGoogle Scholar
  22. Nurmi, K., Ossipov, V., Haukioja, E., Pihlaja, K. 1996Variation in total phenolic contentJ. Chem. Ecol2220232040Google Scholar
  23. Pavia, H., Toth, G. 2000Inducible chemical resistance to herbivory in the brown seaweed Ascophyllum nodosumEcology8132123225Google Scholar
  24. Pavia, H., Cervin, G., Lindgren, A., Åberg, P. 1997Effects of UV-B radiation and simulated herbivory on phlorotannins in the brown alga Ascophyllum nodosumMar. Ecol. Proc. Ser157139146Google Scholar
  25. Pedersen, M.F., Borum, J. 1996Nutrient control of algal growth in estuarine waters: nutrient limitation and the importance of nitrogen requirements and nitrogen storage among phytoplankton and species of macroalgaeMar. Ecol. Proc. Ser142261272Google Scholar
  26. Pedersen, M.F., Borum, J. 1997Nutrient control of estuarine macroalgae: growth strategy and the balance between nitrogen requirements and uptakeMar. Ecol. Proc. Ser161155163Google Scholar
  27. Ragan, M.A., Glombitza, K.W. 1986Phlorotannins, brown algal polyphenolsRound, F.E.Chapman, D.J. eds. Progress in Phycological Research. Vol. 4BiopressBristol, UKGoogle Scholar
  28. Ruuskanen, A. 2000Ecological responses of Fucus vesiculosus L. along environmental gradients in the northern Baltic SeaUniversity of HelsinkiFinland2021PhD thesis,Google Scholar
  29. Rönnberg, O., Ådjers, K., Ruokolahti, C., Bondestam, M. 1992Effects of fish farming on growth epiphytes and nutrient content of Fucus vesiculosus L. in the Åland Archipelagonorthern Baltic SeaAquat. Bot42109120CrossRefGoogle Scholar
  30. Sand-Jensen, K., Revsbech, N.P., Jorgensen, B.B. 1985Microprofiles of oxygen in epiphyte communities on submerged macrophytesMar. Biol895562CrossRefGoogle Scholar
  31. SAS Institute 2000. SAS/STAT user’s guide: statistics version 8.01. SAS InstituteCary, North CarolinaUSA.Google Scholar
  32. Schoenwaelder, M.E.A. 2002The occurrence and cellular significance of physodes in brown algaePhycologia41125139Google Scholar
  33. Targett, N.M., Arnold, T.M. 1998Predicting the effects of brown algal phlorotannins on marine herbivores in tropical and temperate oceansJ. Phycol34195205CrossRefGoogle Scholar
  34. Van Alstyne, K.L. 1988Herbivory grazing increases polyphenolic defenses in the intertidal brown alga Fucus distichusEcology69655663Google Scholar
  35. Vogt, H., Schramm, W. 1991Conspicuous decline of Fucus in Kiel Bay (Western Baltic): what are the causes?Mar. Ecol. Proc. Ser69189194Google Scholar
  36. Wallentinus, I. 1984Comparisons of nutrient uptake rates for Baltic macroalgae with different thallus morphologiesMar. Biol80215225Google Scholar
  37. Worm, B., Lotze, H.K., Sommer, U. 2000Coastal food web structure carbon storage and nitrogen retention regulated by consumer pressure and nutrient loadingLimnol. Oceanogr45339349Google Scholar
  38. Worm, B., Lotze, H.K., Sommer, U. 2001Algal propagule banks modify competition, consumer and resource control on Baltic rocky shoresOecologia128281293CrossRefGoogle Scholar
  39. Yates, J.L., Peckol, P. 1993Effects of nutrient availability and herbivory on polyphenolics in the seaweed Fucus vesiculosusEcology7417571766Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Anne Hemmi
    • 1
  • Anita Mäkinen
    • 1
  • Veijo Jormalainen
    • 1
  • Tuija Honkanen
    • 1
  1. 1.Section of Ecology, Department of BiologyUniversity of TurkuTurkuFinland

Personalised recommendations