Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Coupled gravimetric, manometric and calorimetric study of CO2, N2 and CH4 adsorption on zeolites for the assessment of classical equilibrium models

  • 36 Accesses


N2, CO2 and CH4 pure gas adsorption equilibria on five zeolites with different structural properties (Si/Al ratio, type of cations contained inside their structure, pore size and pore volume) have been measured over a wide range of pressures (from 10–5 to 80 bar) and temperatures (from 253 to 363 K) by combining high pressure gravimetric technique and high resolution low pressure manometry. These experimental data, coupled with the measurement of the differential heat of adsorption and with some literature information obtained with microscopic studies, have allowed to identify and to analyze the different adsorption mechanisms. The results show that CO2 adsorption mechanism is controlled by molecule–cation interactions at low pressures and by the pore volume filling at intermediate and high pressures. On the contrary, N2 and CH4 adsorption mechanism is controlled by the pore volume filling in the whole range of pressures studied in this work. It is shown that the most popular models used in gas separation modeling such as Toth, Sips and bi-Langmuir do not describe the successive physico-chemical phenomena observed for the adsorption of CO2 on zeolites. Moreover, they are not able both to fit the whole range of experimental data and to predict the isosteric heat of adsorption accurately.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. Akten, E.D., Siriwardane, R., Sholl, D.S.: Monte Carlo simulation of single- and binary-component adsorption of CO2, N2, and H2 in zeolite Na-4A. Energy Fuels. 17, 977–983 (2003). https://doi.org/10.1021/ef0300038

  2. Baerlocher, C., McCusker, L.B., Olson, D.H.: Atlas of Zeolite Framework Types. Elsevier, Amsterdam (2007)

  3. BIPM’s: Evaluation of measurement data—Guide to the expression of uncertainty in measurement (2008). https://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf

  4. Bonenfant, D., Kharoune, M., Niquette, P., Mimeault, M., Hausler, R.: Advances in principal factors influencing carbon dioxide adsorption on zeolites. Sci. Technol. Adv. Mater. 9, 013007 (2008). https://doi.org/10.1088/1468-6996/9/1/013007

  5. Bourrelly, S., Maurin, G., Llewellyn, P.L.: Adsorption microcalorimetry of methane and carbon dioxide on various zeolites. In: Studies in Surface Science and Catalysis. pp. 1121–1128. Elsevier, Amsterdam (2005)

  6. Cheung, O., Hedin, N.: Zeolites and related sorbents with narrow pores for CO 2 separation from flue gas. RSC Adv. 4, 14480–14494 (2014). https://doi.org/10.1039/C3RA48052F

  7. Do, D.D.: Adsorption Analysis: Equilibria and Kinetics. Imperial College Press, London (1998)

  8. Dunne, J.A., Mariwala, R., Rao, M., Sircar, S., Gorte, R.J., Myers, A.L.: Calorimetric heats of adsorption and adsorption isotherms. 1. O2, N2, Ar, CO2, CH4, C2H6, and SF6 on silicalite. Langmuir 12, 5888–5895 (1996a). https://doi.org/10.1021/la960495z

  9. Dunne, J.A., Rao, M., Sircar, S., Gorte, R.J., Myers, A.L.: Calorimetric heats of adsorption and adsorption isotherms. 2. O2, N2, Ar, CO2, CH4, C2H6, and SF6 on NaX, H-ZSM-5, and Na-ZSM-5 Zeolites. Langmuir 12, 5896–5904 (1996b). https://doi.org/10.1021/la960496r

  10. Gholipour, F., Mofarahi, M.: Adsorption equilibrium of methane and carbon dioxide on zeolite 13X: experimental and thermodynamic modeling. J. Supercrit. Fluids 111, 47–54 (2016). https://doi.org/10.1016/j.supflu.2016.01.008

  11. Gibbs, J.W. On the equilibrium of heterogeneous substances. Trans. Connecticut Acad. Sci. 1875–1877(3), 108–248, 343–524 (1877)

  12. Gleichmann, K., Unger, B., Brandt, A.: Industrial zeolite molecular sieves. In: Belviso, C. (ed.) Zeolites—Useful Minerals. InTech, Rijeka (2016)

  13. Harlick, P.J.E., Tezel, F.H.: Adsorption of carbon dioxide, methane and nitrogen: pure and binary mixture adsorption for ZSM-5 with SiO2/Al2O3 ratio of 280. Sep. Purif. Technol. 33, 199–210 (2003). https://doi.org/10.1016/S1383-5866(02)00078-3

  14. Hefti, M., Marx, D., Joss, L., Mazzotti, M.: Adsorption equilibrium of binary mixtures of carbon dioxide and nitrogen on zeolites ZSM-5 and 13X. Microporous Mesoporous Mater. 215, 215–228 (2015). https://doi.org/10.1016/j.micromeso.2015.05.044

  15. IZA: Database of Zeolite Structures (2019). https://www.iza-structure.org/databases/

  16. Jaramillo, E., Chandross, M.: Adsorption of small molecules in LTA zeolites. 1. NH3, CO2, and H2O in zeolite 4A. J. Phys. Chem. B. 108, 20155–20159 (2004). https://doi.org/10.1021/jp048078f

  17. Langmuir, I.: the adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918). https://doi.org/10.1021/ja02242a004

  18. Llewellyn, P.L., Coulomb, J.P., Grillet, Y., Patarin, J., Lauter, H., Reichert, H., Rouquerol, J.: Adsorption by MFI-type zeolites examined by isothermal microcalorimetry and neutron diffraction. 1. Argon, krypton, and methane. Langmuir 9, 1846–1851 (1993)

  19. Losch, P.: Synthesis and characterisation of zeolites, their application in catalysis and subsequent rationalisation: methanol-to-olefins (MTO) process with designed ZSM-5 zeolites. PhD Thesis, Universite de Strasbourg (2016)

  20. Lowell, S., Shields, J.E., Thomas, M.A., Thommes, M.: Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. Springer, Dordrecht (2010)

  21. Martin-Calvo, A., Parra, J.B., Ania, C.O., Calero, S.: Insights on the anomalous adsorption of carbon dioxide in LTA zeolites. J. Phys. Chem. C 118, 25460–25467 (2014). https://doi.org/10.1021/jp507431c

  22. Maurin, G., Llewellyn, P.L., Bell, R.G.: Adsorption mechanism of carbon dioxide in Faujasites: grand canonical Monte Carlo simulations and microcalorimetry measurements. J. Phys. Chem. B 109, 16084–16091 (2005). https://doi.org/10.1021/jp052716s

  23. Mofarahi, M., Gholipour, F.: Gas adsorption separation of CO2/CH4 system using zeolite 5A. Microporous Mesoporous Mater. 200, 1–10 (2014). https://doi.org/10.1016/j.micromeso.2014.08.022

  24. Montanari, T., Busca, G.: On the mechanism of adsorption and separation of CO2 on LTA zeolites: an IR investigation. Vib. Spectrosc. 46, 45–51 (2008). https://doi.org/10.1016/j.vibspec.2007.09.001

  25. Mouahid, A., Bessieres, D., Plantier, F., Pijauder-Cabot, G.: A thermostated coupled apparatus for the simultaneous determination of adsorption isotherms and differential enthalpies of adsorption at high pressure and high temperature. J. Therm. Anal. Calorim. 109, 1077–1087 (2012). https://doi.org/10.1007/s10973-011-1820-2

  26. Newsome, D., Gunawan, S., Baron, G., Denayer, J., Coppens, M.-O.: Adsorption of CO2 and N2 in Na–ZSM-5: effects of Na+ and Al content studied by Grand Canonical Monte Carlo simulations and experiments. Adsorption 20, 157–171 (2014). https://doi.org/10.1007/s10450-013-9560-1

  27. Rouquerol, J., Llewellyn, P., Rouquerol, F.: Is the bet equation applicable to microporous adsorbents? In: Studies in Surface Science and Catalysis, pp. 49–56. Elsevier, Amsterdam (2007)

  28. Ruthven, D.M.: Principles of Adsorption and Adsorption Processes. Wiley, New York (1984)

  29. Sips, R.: Combined form of Langmuir and Freundlich equations. J. Chem. Phys. 16, 490–495 (1948)

  30. Tagliabue, M., Farrusseng, D., Valencia, S., Aguado, S., Ravon, U., Rizzo, C., Corma, A., Mirodatos, C.: Natural gas treating by selective adsorption: material science and chemical engineering interplay. Chem. Eng. J. 155, 553–566 (2009). https://doi.org/10.1016/j.cej.2009.09.010

  31. Thommes, M., Mitchell, S., Pérez-Ramírez, J.: Surface and pore structure assessment of hierarchical MFI zeolites by advanced water and argon sorption studies. J. Phys. Chem. C. 116, 18816–18823 (2012). https://doi.org/10.1021/jp3051214

  32. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87(9–10), 1051–1069 (2015). https://doi.org/10.1515/pac-2014-1117

  33. Toth, J.: State equations of the solid gas interface layer. Acta Chem. Acad. Hung. 69, 311–317 (1971)

  34. Wang, Y., LeVan, M.D.: Adsorption equilibrium of carbon dioxide and water vapor on zeolites 5A and 13X and silica gel: pure components. J. Chem. Eng. Data 54, 2839–2844 (2009). https://doi.org/10.1021/je800900a

  35. Wang, J., Huang, L., Yang, R., Zhang, Z., Wu, J., Gao, Y., Wang, Q., O’Hare, D., Zhong, Z.: Recent advances in solid sorbents for CO2 capture and new development trends. Energy Environ. Sci. 7, 3478–3518 (2014). https://doi.org/10.1039/C4EE01647E

  36. Wiersum, A.: Developing a strategy to evaluate the potential of new porous materials for the separation of gases by adsorption. Doctoral thesis in Materials Science, Physics, Chemistry and Nanosciences (2012)

  37. Yang, R.T.: Gas Separation by Adsorption Processes. Imperial College Press, London (1999)

  38. Zimmermann, W., Keller, J.U.: A new calorimeter for simultaneous measurement of isotherms and heats of adsorption. Thermochim. Acta. 405, 31–41 (2003). https://doi.org/10.1016/S0040-6031(03)00133-3

  39. Zukal, A., Mayerová, J., Kubů, M.: Adsorption of carbon dioxide on high-silica zeolites with different framework topology. Top. Catal. 53, 1361–1366 (2010). https://doi.org/10.1007/s11244-010-9594-5

  40. Zukal, A., Arean, C.O., Delgado, M.R., Nachtigall, P., Pulido, A., Mayerová, J., Čejka, J.: Combined volumetric, infrared spectroscopic and theoretical investigation of CO2 adsorption on Na-A zeolite. Microporous Mesoporous Mater. 146, 97–105 (2011). https://doi.org/10.1016/j.micromeso.2011.03.034

Download references


We would like to thank TOTAL and ANRT for the financial support of this study (CIFRE Convention No. 2016/1165).

Author information

Correspondence to Alejandro Orsikowsky-Sanchez or Christelle Miqueu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file (PDF 550 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Orsikowsky-Sanchez, A., Plantier, F. & Miqueu, C. Coupled gravimetric, manometric and calorimetric study of CO2, N2 and CH4 adsorption on zeolites for the assessment of classical equilibrium models. Adsorption (2020). https://doi.org/10.1007/s10450-020-00206-7

Download citation


  • Adsorption isotherm
  • Zeolites
  • Differential heat of adsorption
  • Adsorption modeling