Advertisement

Adsorption

pp 1–11 | Cite as

The equilibrium of germanium(IV) and copper(II) ions sorption from chloride solutions on the anion-exchange resin AN-31

  • Elena A. StroganovaEmail author
  • Sergey G. Bezryadin
  • Tatyana V. Larina
Article
  • 10 Downloads

Abstract

Isotherms of Ge(IV) and Cu(II) ions sorption on to the weakly basic anion-exchange resin AN-31 from chloride solutions have been constructed and described. The dependence of equilibrium parameters of Ge(IV) and Cu(II) ions sorption from chloride ions concentration was shown. Based on the electron spectra of diffuse reflectance of copper-containing sorbent, isotherms of sorption and isomolar copper–germanium ions distribution diagram in solutions with different chloride concentrations the nature of extracted particles has been established, and the effect of the mineral background on the sorbent capacity has been determined. The synergistic effect of Cu(II) ions sorption in the presence of Ge(IV) ions has been established. It was found that the ionic and uncharged associates formed by hydroxy-chloride polynuclear cuprate(II) cations and methagermanate anions extract from the chloride solutions onto AN-31. The possibility of selective Cu(II) ions sorption from germanium containing 1 M chloride solutions in wide range of Ge(IV):Cu(II) molar ratios from 1:3 to 1:1 has been established.

Keywords

Sorption Germanium Copper AN-31 Isotherm Selectivity Hydroxy-chloride polynuclear cuprate species Electron spectroscopy of diffuse reflectance Amine hydroxy complexes Oxide dimmers Flat-squared oxide clusters 

List of symbols

Ce

Equilibrium solution phase adsorbate concentration (mmol g−1)

C0M

Initial molarity concentrations of adsorbate in solution (mmol L−1)

CeM

Equilibrium molarity concentrations of adsorbate in solution (mmol L−1)

V

Volume of adsorbate solution (L)

m

Weight of the sorbent (g)

Qe

Equilibrium concentration of adsorbate in the sorbent (mmol g−1)

QM

Maximum adsorption capacity (mmol g−1)

Kd

Distribution coefficient of the ions at equilibrium calculated on the Henry (liner) site of the isotherm (Kd = Qe/Ce) dimensionless

Ks

Selectivity constant representing ratio between distribution coefficients of competing ions during the sorption (Ks = Kd(B1)/Kd(B2) were B1 and B2 are competing ions) dimensionless

KL

Langmuir isotherm constant (dimensioned for isotherm in molality units in g mmol−1)

KF

Freundlich isotherm constant (dimensioned for isotherm in molality units in \({\text{g}}^{{( 1+ {\text{b}}_{\text{F}} )}} {\text{mmol}}^{{ - ( 1+ {\text{b}}_{\text{F}} )}}\))

bF

Freundlich isotherm constant related to adsorption intensity (characterizes the degree of approximation of the isotherm to the line)

R2

Correlation coefficient

Notes

References

  1. Anufrienko, V.F., Maksimov, N.G., Shinkarenko, V.G.: Application of Zeolites in Catalysis. Nauka, Novosibirsk (1977). (in Russian) Google Scholar
  2. Anufrienko, V.F., Yashnik, S.A., Bulgakov, N.N., Larina, T.V., Vasenin, N.T., Ismagilov, Z.R.: A study of linear copper oxide structures in the channels of the ZSM-5 zeolite by electronic diffuse reflectance spectroscopy. Dokl. Phys. Chem. 392(1–3), 207–211 (2003)CrossRefGoogle Scholar
  3. Ashirov, A.: Waste Waters, Solutions and Gases Ion-Exchange Clearing, Leningrad, Chemistry (1983). (in Russian)Google Scholar
  4. Boreskov, G.K.: The influence of the matrix on the catalytic properties of transition-metal cations in solid oxide catalysts. In: Bond, G.C., Wells, P.B., Tompkins, F.C., (eds.) Proceedings of the 6th International Congress on Catalysis, London, July 12–16, 1976. The Chemical Society, London, vol. 1, pp. 204–215 (1976)Google Scholar
  5. Bravo-Suarez, J.J., Subramaniam, B., Chaudhari, R.V.: Ultraviolet–visible spectroscopy and temperature-programmed techniques as tools for structural characterization of Cu in CuMgAlOx mixed metal oxides. J. Phys. Chem. C 116, 18207–18221 (2012)CrossRefGoogle Scholar
  6. Cerofolini, G.A.: Unified theory for Freundlich, Dubinin-Radushkevich and Temkin behaviors. J. Colloid Interface Sci. 86(1), 204–212 (1982)CrossRefGoogle Scholar
  7. Cerofolini, G.F., Re, N.: The mathematical theory of adsorption on non-ideal surfaces. Riv. Nuovo Cimento 16(7), 1–63 (1993)CrossRefGoogle Scholar
  8. Chetvericov, A.F., Grachev, L.L., Samborsky, I.V.: Method of selective to germanium ions ion-exchange resin obtaining, A. c. 288301 SSSR, MKI 39 B 22/04, MPK C 08 G. № 940615/23-5; declaration 30.01.1965; publishing 03.12.1970; bulletin №36 (1970) (in Russian)Google Scholar
  9. Clarke, L.B., Sloss, L.L.: Trace elements emissions from coal combustion and gasification. IEA Coal Res., London (1992)Google Scholar
  10. Dąbrowsky, A.: Adsorption: from theory to practice. Adv. Coll. Interface. Sci. 93, 135–224 (2001)CrossRefGoogle Scholar
  11. Dada, A.O., Olalekan, A.P., Olatunya, A.M., Dada, O.: Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. J. Appl. Chem. 3, 38–45 (2012)Google Scholar
  12. Database of Powder X-ray Diffraction Standards PDF (JCPDS-ICDD), Card No. 25-0325Google Scholar
  13. Drago, R.S.: Physical Methods in Chemistry. W. B. Saunders Company, Philadelphia (1977)Google Scholar
  14. Esenlik, S., Karayigit, A.I., Bulut, Y., Querol, X., Alastuey, A., Font, O.: Element behavior during combustion in coal-fired Orhane power plant. Geol. Acta 4(4), 439–449 (2006)Google Scholar
  15. Font, O., Querol, X., Huggins, F.E., Chimenos, J.M., Fernández, A.I., Burgos, S., Peña, F.G.: Speciation of major and selected trace elements in IGCC fly ash. Fuel 84, 1364–1371 (2005a)CrossRefGoogle Scholar
  16. Font, O., Querol, X., López-Soler, A., Chimenos, J.M., Fernández, A.I., Burgos, S., Peña, F.G.: Ge extraction from gasification fly ash. Fuel 84, 1384–1392 (2005b)CrossRefGoogle Scholar
  17. Foo, K.Y., Hameed, B.H.: Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 156, 2–10 (2010)CrossRefGoogle Scholar
  18. Giles, C.H., Smith, D., Huitson, A.A.: General treatment and classification of the solute adsorption isotherm. J. Colloid Interface Sci. 47(3), 755–765 (1974)CrossRefGoogle Scholar
  19. GOST 10900-84: Ion-Exchange Resins: The Resin Grain Size Determination Methods. IPK Standards Publishing, Moscow (1984). (in Russian)Google Scholar
  20. Hameed, B.H., Tan, I.A.W., Ahmad, A.L.: Adsorption isotherm, kinetic modeling and mechanism of 2,4,6-trichlorophenol on coconut husk-based activated carbon. Chem. Eng. J. 144, 235–244 (2008)CrossRefGoogle Scholar
  21. Inukai, Y., Kaida, Y., Yasuda, S.: Selective adsorbents for germanium(IV) derived from chitosan. Anal. Chim. Acta 343, 275–279 (1997a)CrossRefGoogle Scholar
  22. Inukai, Y., Kaida, Y., Yasuda, S.: Adsorption behavior of germanium(IV) on branched-saccharide chitosan derivatives. Anal. Sci. 13, 221–224 (1997b)CrossRefGoogle Scholar
  23. Inukai, Y., Chinen, T., Matsuda, T., Kaida, Y., Yasuda, S.: Selective separation of germanium(IV) by 2,3-dihydroxypropyl chitosan resin. Anal. Chim. Acta 371, 187–193 (1998)CrossRefGoogle Scholar
  24. Ismagilov, Z.R., Yashnik, S.A., Anufrienko, V.F., Larina, T.V., Vasenin, N.T., Bulgakov, N.N., Vosel, S.V., Tsykoza, L.T.: Linear nanoscale clusters of CuO in Cu-ZSM-5 catalysts. Appl. Surf. Sci. 226(1–3), 88–93 (2004)CrossRefGoogle Scholar
  25. Jarosz, M., Marczenko, Z.: Study of the formation of vanadium(1 V) complexes with some triphenylmethane reagents and cationic surfactants. Analyst 109, 35–38 (1984)CrossRefGoogle Scholar
  26. Kokotov, YuA, Pasechnik, V.A.: Equilibrium and kinetics of ion-exchange sorption. Chemistry, Leningrad (1970). (in Russian) Google Scholar
  27. Lever, A.B.P.: Inorganic Electronic Spectroscopy, 2nd edn. Elsevier, Amsterdam (1984)Google Scholar
  28. Matějka, Z., Parschová, H., Ruszová, P., Jelínek, L., Houserová, P., Mištová, E., Beneš, M.: M. In: Moyer, B.A., Singh, R.P., Hrubýs, M. (eds.) Fundamentals and Applications of Anion Separations. Kluwer Academic, New York (2004)Google Scholar
  29. Nazarenko, V.A.: The Analytical Chemistry of Germanium. Nauka, Moscow (1973). (in Russian) Google Scholar
  30. Néher-Neumann, E.: On the hydrolysis of the copper(II)ion, Cu2+ in 3 M (Na)ClO4 medium at high copper(II) ion concentrations and 25 °C. Acta Chem. Scand. A 38, 517–522 (1984)CrossRefGoogle Scholar
  31. Plyasunova, N.V., Wang, M., Zhang, Y., Muhammed, M.: Critical evaluation of thermodynamics of complex formation of metal ions in aqueous solutions. II Hydrolysis and hydroxy-complexes of Cu2+ at 298-15 K. Hydrometallurgy 45, 37–51 (1997)CrossRefGoogle Scholar
  32. Powell, K.J., Brown, P.L., Byrne, R.H., Gajda, T., Hefter, G., Sjőberg, S., Wanner, H.: Chemical speciation of environmentally significant metals with inorganic ligands. Part 2: The Cu2+, OH, Cl, CO3 2−, SO4 2−, and PO4 3−. Syst. Pure Appl. Chem. 79(5), 895–950 (2007)CrossRefGoogle Scholar
  33. Querol, X., Fernández-Turiel, J.L., López-Soler, A.: Trace elements in coal and their behaviour during combustion in a large power station. Fuel 74(3), 331–343 (1995)CrossRefGoogle Scholar
  34. Querol, X., Juan, R., López-Soler, A., Fernández-Turiel, J.L., Ruiz, C.R.: Mobility of trace elements from coal and combustion wastes. Fuel 75(7), 821–838 (1996)CrossRefGoogle Scholar
  35. Robertis, A., Stefano, C., Foti, C., Signorino, G.: Thermodynamic parameters for the formation of dimeric hydrolytic species of copper(II) in aqueous NaClO4 solution at different ionic strengths. Talanta 44, 1839–1846 (1997)PubMedCrossRefGoogle Scholar
  36. Schoonheydt, R.A.: Transition metal ions in zeolites: siting and energetics of Cu2+. Catal. Rev. 35, 129 (1993)CrossRefGoogle Scholar
  37. Selvaraj, R., Jey-Won, Y., Younghun, K., Won-Ho, K.: Application of Mg-mesoporous aluminia prepared by using magnesium stearate as a template for the removal of nickel: kinetics, isotherm, and error analysis. Ind. Eng. Chem. Res. 46, 2834–2842 (2007)CrossRefGoogle Scholar
  38. Sergienko, V.S., Minacheva, LKh, Churakov, A.V.: Specific features of the structure of germanium(IV) complexes with polybasic acids. Russ. J. Inorg. Chem. 55(13), 2001–2030 (2010)CrossRefGoogle Scholar
  39. Shi, F.-N., Cunha-Silva, L., Hardie, M.J., Trindade, T., Paz, F.A., Rocha, J.: Heterodimetallic germanium(IV) complex structures with transition metals. Inorg. Chem. 46, 6502–6515 (2007)PubMedCrossRefGoogle Scholar
  40. Shklyaev, A.A., Anufrienko, V.F., Ogorodnikov, V.D.: ESR investigation of the adducts of planar copper complexes. J. Struct. Chem. 14(6), 938–945 (1973)CrossRefGoogle Scholar
  41. Sikdar, Y., Modak, R., Bose, D., Banerjee, S., Bienko, D., Zierkiewicz, W., Bienko, A., Saha, K.D., Goswami, S.: Doubly chloro bridged dimeric copper(II) complex: magneto-structural correlation and anticancer activity. Dalton Trans. 44, 8876–8888 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  42. Sobinyakova, N.M., Anosov, V.V., Balihina, S.I.: Germanium extraction from circulating solutions of germanium production. Non-ferrous Met. 8, 50–54 (1972). (in Russian) Google Scholar
  43. Starobinets, G.P., Sednev, M.P.: Ion-Exchange and Sorption from Solutions, AN BSSR, 25 (1963). (in Russian)Google Scholar
  44. Stroganova, E.A., Anufrienko, V.F.: Features of copper (II) ions stabilization in phase of AN-31 anion-exchange resin during the sorption process from chloride solutions. Vestn Orenb. State Univ. 13(188), 209–215 (2015). (in Russian) Google Scholar
  45. Stroganova, E.A., Anufrienko, V.F., Larina, T.V., Vasenin, N.T., Lebedev, YuA, Parmon, V.N.: Effect of sorption conditions on the state of copper(II) ions in the phase of AN-31 ion exchange resin, according to data from EPR and electron spectroscopy of diffuse reflection. Russ. J. Phys. Chem. A 91(8), 1549–1557 (2017)CrossRefGoogle Scholar
  46. Swaine, D.J.: Trace elements in coal. Butterworth & Co., Publ, London (1990)Google Scholar
  47. Tolvanen, Merja: Mass balance determination for trace elements at coal-, peat- and bark-fired power plants. Otamedia Oy, Espoo (2004)Google Scholar
  48. Vishnevskaya, G.P., Molochnikov, L.S., Safin, RSh: EPR in Ion Exchangers. Nauka, Moscow (1992). (in Russian) Google Scholar
  49. Vishnevskaya, G.P., Frolova, E.N., Pervova, I.G., Lipunova, G.N., Gorbatenko, YuA, Lipunov, I.N.: Complexation of Cu(II) with hetarylformazanes in solutions, polycrystals, and modified anionite. Russ. J. Coord. Chem. 31, 828–833 (2005)CrossRefGoogle Scholar
  50. Watkins, N.T., Dixon, E.E., Crawford, V.H., Mcgregor, K.T., Hatfie, W.E.: Chloro-bridged triplet ground-state copper(II) dimer. JSC Chem. Commun. 4, 133–134 (1973)CrossRefGoogle Scholar
  51. Yashnik, S.A., Anufrienko, V.F., Zaikovskii, V.I., Rogov, V.A., Ruzankin, S.Ph., Ismagilov, Z.R.: Stabilisation of copper nanoparticles in Cu-ZSM-5, zeolites and related materials: trends, targets and challenges. In: Proceeding of 4th International FEZA Conference, pp. 177–180 (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryOrenburg State UniversityOrenburgRussia
  2. 2.Department of Chemical Technology of Oil, Gas and Ecology ProcessingOrenburg Branch of Gubkin Russian State University of Oil and Gas (National Research University)OrenburgRussia
  3. 3.Boreskov Institute of CatalysisSiberian Branch of Russian Academy of SciencesNovosibirskRussia

Personalised recommendations