pp 1–9 | Cite as

Molecular dynamics simulations of surfactant adsorption on carbon nanotubes intended for biomedical applications

  • Isabel Lado-TouriñoEmail author
  • Piedad Ros Viñegla


Carbon nanotubes (CNTs) are allotropes of carbon with hollow, long structures, having diameters on the nanometer scale. They can be described as rolled-up graphene layers. During the last years, they have been increasingly used in the fields of pharmacy and biomedicine. However, due to their high hydrophobicity, they cannot be easily handled in most solvents of biological interest. To this end, different surfactants have been used to improve their dispersion in aqueous media. In the present work, we investigated the adsorption behavior of two surfactants, sodium dodecyl sulfate (SDS) and sodium dodecyl benzene sulfonate (SDBS), at different concentrations on a CNT surface by classical molecular dynamics (MD) simulations. Our results are presented in terms of distance between surfactant molecules and CNT surfaces, radial distribution functions and interaction energies. In all the models simulated in this work, a strong interaction of both surfactants with the CNT surface is observed, as it is demonstrated by decreasing distances between the surfactants and the CNT during simulation time, the shape of their radial distribution functions, as well as favorable adsorption processes from an energetic point of view.


Carbon nanotubes Anionic surfactant Molecular dynamics Molecular modelling 



This work was supported by Grant CTQ2013-47699-R from the Spanish Ministry of Economy and Competitiveness and Grant 2014/UEM14 from the Universidad Europea de Madrid.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10450_2019_184_MOESM1_ESM.avi (372.8 mb)
Supplementary material 1 (AVI 381736 kb)
10450_2019_184_MOESM2_ESM.avi (372.8 mb)
Supplementary material 2 (AVI 381736 kb)
10450_2019_184_MOESM3_ESM.avi (356.7 mb)
Supplementary material 3 (AVI 365249 kb)
10450_2019_184_MOESM4_ESM.avi (374 mb)
Supplementary material 4 (AVI 383004 kb)
10450_2019_184_MOESM5_ESM.avi (372.8 mb)
Supplementary material 5 (AVI 381736 kb)
10450_2019_184_MOESM6_ESM.avi (377.7 mb)
Supplementary material 6 (AVI 386809 kb)
10450_2019_184_MOESM7_ESM.avi (357.9 mb)
Supplementary material 7 (AVI 366517 kb)
10450_2019_184_MOESM8_ESM.avi (372.8 mb)
Supplementary material 8 (AVI 381736 kb)


  1. Alves da Cunha, R., Fantini, C., Andrade, N.F., Alcantara, P., Saraiva, G.D., Souza, A.G., Terrones, M., dos Santos, M.C.: Enhanced solubilization of carbon nanotubes in aqueous suspensions of anionic–nonionic surfactant mixtures. J. Phys. Chem. C 117(47), 25138–25145 (2013)CrossRefGoogle Scholar
  2. Barzegar, A., Mansouri, A., Azamat, A.J.: Molecular dynamics simulation of non-covalent single-walled carbon nanotube functionalization with surfactant peptides. J. Mol. Graph. Modell. 64, 75–84 (2016)CrossRefGoogle Scholar
  3. Baughman, R.H., Zakhidov, A.A., de Heer, W.A.: Carbon nanotubes: the route toward applications. Science 297(5582), 787–792 (2002)PubMedCrossRefPubMedCentralGoogle Scholar
  4. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354(7), 56–58 (1991a)CrossRefGoogle Scholar
  5. Bilalis, P.K., Dimitriοs, A.A., Sakellariou, G.: Non-covalent functionalization of carbon nanotubes with polymers. RSC Adv. 4(6), 2911–2934 (2013)CrossRefGoogle Scholar
  6. Biovia Materials Studio Forcite. Cambridge. Dassault Systemes, BIOVIA Ltd. Accessed 5 Apr 2019
  7. Blanch, A.J., Lenehan, C.E., Quinton, J.S.: Optimizing surfactant concentrations for dispersion of single-walled carbon nanotubes in aqueous solution. J. Phys. Chem. B 114(30), 9805–98011 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bockrath, M.: Carbon nanotubes: the weakest link. Nat. Phys. 2(3), 155 (2006)CrossRefGoogle Scholar
  9. Burghard, M., Balasubramanian, K.: Functionalized carbon nanotubes. Small 1(2), 180–192 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  10. Calle, D., Negri, V., Munuera, C., Mateos, L., Lado-Touriño, I., Ros-Viñegla, P., Ramírez, M., García-Hernández, M., Cerdán, S., Ballesteros, P.: Magnetic anisotropy of functionalized multi-walled carbon nanotube suspensions. Carbon 131, 229–237 (2018)CrossRefGoogle Scholar
  11. Cerpa, A., Köber, M., Calle, D., Negri, V., Gavira, J.M., Hernanz, A., Briones, F., Cerdán, S., Ballesteros, P.: Oxidized single-walled carbon nanotubes as anisotropic probes for magnetic resonance imaging. Med. Chem. Commun. 4(4), 669–672 (2013)CrossRefGoogle Scholar
  12. Cerpa, A., Quiroga, O., Moreno, R., Lado-Touriño, I., Ros Viñegla, P., Negri, V., Cerdán, S., Ballesteros, P.: Structural, colloidal and rheological characterizations of single walled carbon nanotubes suspensión. In: Ken Haenen, Jose Antonio Garrido, John Robertson (eds) Proceedings of the 25th International Conference on Diamond and Carbon Materials (2014)Google Scholar
  13. Chen, S.J., Qiu, C.Y., Korayem, A.H.: Agglomeration process of surfactant-dispersed carbon nanotubes in unstable dispersion: a two-stage agglomeration model and experimental evidence. Powder Technol. 301, 412–420 (2016)CrossRefGoogle Scholar
  14. Clark, M.D., Subramanian, S., Krishnamoorti, R.: Understanding surfactant aided aqueous dispersion of multi-walled carbon nanotubes. J. Colloid Interface Sci. 354(1), 144–151 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  15. De Volder, M.F.L., Tawfick, S.H., Baughman, R.H., Hart, A.J.: Carbon nanotubes: present and future commercial applications. Science 339(6119), 535–539 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  16. Di Crescenzo, A., Kopf, I., Pieraccini, S., Masiero, S., Del Canto, E., Spada, G.P., Giordani, S., Fontana, A.: Lipophilic guanosine derivatives as carbon nanotube dispersing. Carbon 50(12), 4663–4672 (2012)CrossRefGoogle Scholar
  17. Duan, W.H., Wang, Q., Collins, F.: Dispersion of carbon nanotubes with SDS surfactants: a study from a binding energy perspective. Chem. Sci. 2(7), 1407–1413 (2011)CrossRefGoogle Scholar
  18. Fatemi, S.M., Foroutan, M.: Recent developments concerning the dispersion of carbon nanotubes in surfactant/polymer systems by MD simulation. J. Nanostruct. Chem. 6(1), 29–40 (2016)CrossRefGoogle Scholar
  19. Fernandes, R.M.F., Abreu, B., Claro, B., Buzaglo, M., Regev, O., Furó, I., Marques, E.F.: Dispersing carbon nanotubes with ionic surfactants under controlled conditions: comparisons and insight. Langmuir 31(40), 10955–10965 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  20. Forró, L., Schönenberger, C.: Physical properties of multi-wall nanotubes. In: Heidelberg, Springer Verlag Berlin (ed.) Carbon Nanotubes, Synthesis, Structure, Properties, and Applications, pp. 329–391. Springer, Berlin (2001)Google Scholar
  21. Geckeler, K.E., Premkumar, T.: Carbon nanotubes: are they dispersed or dissolved in liquids? Nanoscale Res. Lett. 6(1), 136–139 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  22. Graham, A.P., Duesberg, G.S., Seidel, R.V.: Carbon nanotubes for microelectronics. Small 1(4), 382–390 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  23. Guo, Q., Shen, X., Li, Y.J.: Carbon nanotubes-based drug delivery to cancer and brain. Huazhon Univ. Sci. Technol. 37(5), 635–641 (2017)Google Scholar
  24. Haddad, R., Cosnier, S., Maaref, A.: Non-covalent biofunctionalization of single-walled carbon nanotubesviabiotin attachment by π-stacking interactions and pyrrole polymerization. Analyst 134(12), 2412–2418 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  25. He, H., Pham-Huy, L.A., Dramou, P., Xiao, D., Zuo, P., Pham-Huy, C.: Carbon nanotubes: applications in pharmacy and medicine. Biomed. Res. Int. 2013, 578290–578302 (2013)PubMedPubMedCentralGoogle Scholar
  26. Hemasa, A.L., Naumovski, N., Maher, W.A., Ghanem, A.: Application of carbon nanotubes in chiral and achiral separations of pharmaceuticals. Biol. Chem. Nanomat. 7(7), 186–218 (2017)Google Scholar
  27. Hoover, W.G.: Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31(3), 1695–1697 (1985)CrossRefGoogle Scholar
  28. Iijima, S.S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991b)CrossRefGoogle Scholar
  29. Islam, M.F., Rojas, E., Bergey, D.M., Johnson, A.T., Yodh, A.G.: High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett. 3(2), 269–273 (2003)CrossRefGoogle Scholar
  30. Itzhak, R., Raichman, D., Shahar, Z., Frey, G.L., Yerushalmi-Rozen, R.: Tailoring triblock copolymers for dispersion of individual, pristine, single-walled carbon nanotubes in organic solvents. J. Phys. Chem. C 114(9), 3748–3753 (2010)CrossRefGoogle Scholar
  31. Kateb, B., Yamamoto, V., Alizadeh, D.: Multi-walled carbon nanotube (MWCNT) synthesis, preparation, labeling, and functionalization. Methods Mol. Biol. 651, 307–317 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  32. Lado Touriño, I., Cerpa, A., Negri, V., Cerdán, S., Ballesteros, P.: Coarse-grained molecular dynamics simulation of water diffusion in the presence of carbon nanotubes. J. Mol. Graph. Modell. 62, 69–73 (2015)CrossRefGoogle Scholar
  33. Liu, Z., Tabakman, S., Welsher, K., Dai, H.: Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res. 2(2), 85–120 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  34. Madni, I., Hwang, C.Y., Park, S.Y., Choa, Y., Kim, H.: Surfactant system for stable suspension of multiwalled carbon nanotubes. Colloids Surf. A 358(1–3), 101–107 (2010)CrossRefGoogle Scholar
  35. Negri, V., Cerpa, A., López-Larrubia, P., Nieto-Charques, L., Cerdán, S., Ballesteros, P.: Nanotubular paramagnetic probes as contrast agents for diffusion tensor magnetic resonance imaging. Angew. Chem. Int. Ed. 49(10), 1813–1815 (2010)CrossRefGoogle Scholar
  36. Nguendia, J.Z., Zhong, W., Fleury, A., De Grandpré, G., Soldera, A., Sabat, R.G., Claverie, J.P.: Supramolecular complexes of multivalent cholesterol-containing polymers to solubilize carbon nanotubes in apolar organic solvents. Chem. Asian J. 9(5), 1356–1364 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  37. Odom, T.W., Huang, J.L., Lieber, C.M.: Single-walled carbon nanotubes: from fundamental studies to new device concepts. Ann. N. Y. Acad. Sci. 960(1), 203–215 (2002)PubMedCrossRefPubMedCentralGoogle Scholar
  38. Pang, J., Xu, G., Tan, Y.: Water-dispersible carbon nanotubes from a mixture of an ethoxy-modified trisiloxane and pluronic block copolymer F127. Colloid Polym. Sci. 288(18), 1665–1675 (2010)CrossRefGoogle Scholar
  39. Patel, N., Egorov, S.A.: Dispersing nanotubes with surfactants: a microscopic statistical mechanical analysis. J. Am. Chem. Soc. 127(41), 14124–14125 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  40. Peng, B., Locascio, M., Zapol, P., Li, S., Mielke, S.L., Schatz, G.C., Espinosa, H.D.: Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nat. Nanotechnol. 3(10), 626–631 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  41. Poorgholami-Bejarpasi, N., Sohrabi, B.: Self-assembly of cationic surfactants on the carbon nanotube surface: insights from molecular dynamics simulations. J. Mol. Modell. 19(10), 4319–4335 (2013)CrossRefGoogle Scholar
  42. Raffa, P., Wever, D.A.Z., Picchioni, F.: Polymeric surfactants: synthesis, properties, and links to applications. Chem. Rev. 115(16), 8504–8563 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  43. Ren, J., Xu, Q., Chen, X., Li, W., Guo, K., Zhao, Y., Wang, Q., Peng, Q., Li, Y.G.: Tissue engineering: superaligned carbon nanotubes guide oriented cell growth and promote electrophysiological homogeneity for synthetic cardiac tissues. Adv. Mater. 29(44), 1702713–1702721 (2017)CrossRefGoogle Scholar
  44. Robinson, V.C., Bergfeld, W.F., Belsito, D.V.: Final report of the amended safety assessment of sodium laureth sulfate and related salts of sulfated ethoxylated alcohols. Int. J. Toxicol. 29(4), 151S–161S (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  45. Roquelet, C., Lauret, J.S., Alain-Rizzo, V., Voisin, C., Delarue, M., Garrot, D., Loiseau, A., Roussignol, P., Delaire, J.A., Deleporte, E.: Pi-stacking functionalization of carbon nanotubes through micelle swelling. ChemPhysChem 11(8), 1667–1672 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  46. Shaffer, M.S.P., Fan, X., Windle, A.H.: Dispersion and packing of carbon nanotubes. Carbon Carbon 36(11), 1603–1612 (1998)CrossRefGoogle Scholar
  47. Shim, M., Shin Kam, N.W., Chen, R.J., Li, Y., Dai, H.: Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett. 2(4), 285–288 (2002)CrossRefGoogle Scholar
  48. Sun, H., Jin, Z., Yan, C., Akkermans, R.L.: COMPASS II: extended coverage for polymer and drug-like molecule databases. J. Mol. Graph. Modell. 22(2), 47–57 (2016)CrossRefGoogle Scholar
  49. Suttipong, M., Tummala, N., Kitiyanan, B., Striolo, A.: Role of surfactant molecular structure on self-assembly: aqueous SDBS on carbon nanotubes. J. Phys. Chem. C 115(35), 17286–17296 (2011)CrossRefGoogle Scholar
  50. Syrgiannis, Z., Melchionna, M., Prato, M.: Covalent carbon nanotube functionalization. In: Springer Verlag Berlin Heidelberg (ed.) Encyclopedia of Polymeric Nanomaterials, pp. 480–487. Springer, Berlin (2015)CrossRefGoogle Scholar
  51. Tan, Y., Resasco, D.E.: Dispersion of single-walled carbon nanotubes of narrow diameter distribution. J. Phys. Chem. B 109(30), 14454–14460 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  52. Tummala, N.R., Striolo, A.: SDS surfactants on carbon nanotubes: aggregate morphology. ACS Nano 3(3), 595–602 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  53. Vaisman, L., Marom, G., Wagner, H.D.: Dispersions of surface modified carbon nanotubes in water soluble and water insoluble polymers. Adv. Funct. Mater. 16(3), 357–363 (2006)CrossRefGoogle Scholar
  54. Yang, W., Thordarson, P., Gooding, J.J., Ringer, S.P., Braet, F.: Carbon nanotubes for biological and biomedical applications. Nanotechnology 18(41), 1–13 (2007)CrossRefGoogle Scholar
  55. Yang, Q., Yi, Z., Jing, Q., Yue, R., Jiang, W., Lin, D.: Sonication-assisted dispersion of carbon nanotubes in aqueous solutions of the anionic surfactant SDBS: the role of sonication energy. Chin. Sci. Bull. 58(17), 2082–2090 (2013)CrossRefGoogle Scholar
  56. Yangyang, L., Junfeng, N., Zhenyao, S.: Size effect of single-walled carbon nanotube on adsorption of perfluorooctanesulfonate. Chemosphere 91(6), 784–790 (2013)CrossRefGoogle Scholar
  57. Yurekli, K., Mitchell, C.A., Krishnamoorti, R.: Small-angle neutron scattering from surfactant-assisted aqueous dispersions of carbon nanotubes. J. Am. Chem. Soc. 126(32), 9902–9904 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  58. Zelikman, E., Alperstein, D., Mechrez, G., Suckeverine, R.: Study of interactions between single-wall carbon nanotubes and surfactant using molecular simulations. Polym. Bull. 70(4), 1195–1204 (2013)CrossRefGoogle Scholar
  59. Zhang, Y., Bai, Y., Yan, B.: Functionalized carbon nanotubes for potential medicinal applications. Drug Discov Today 15(11–12), 428–435 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  60. Zhang, X., Zhang, J., Wang, R., Zhu, T.: Surfactant directed polypyrrole/CNT nanocables: synthesis, characterization, and enhanced electrical properties. ChemPhysChem 5(7), 998–1002 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  61. Zhijun, X., Xiaoning, Y., Yang, Z.A.: Molecular simulation probing of structure and interaction for supramolecular sodium dodecyl sulfate/single-wall carbon nanotube assemblies. Nano Lett. 10(3), 985–991 (2010)CrossRefGoogle Scholar
  62. Zhu, Z.: Overview of carbon nanotubes and graphene for biosensing applications. Nano Micro. Lett. 9(3), 1–25 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Industrial and Aerospace Engineering, School of Architecture, Engineering and DesignUniversidad Europea de MadridVillaviciosa de OdónSpain
  2. 2.Department of Pharmacy, Biotechnology, Nutrition, Optics and Optometry, Faculty of Biomedical and Health SciencesUniversidad Europea de MadridVillaviciosa de OdónSpain

Personalised recommendations