pp 1–12 | Cite as

Theoretical investigation of adsorption effects Ciclopirox drug over CNT(6,6-6) nanotube as factor of drug delivery: a DFT study

  • Siyamak ShahabEmail author
  • Masoome SheikhiEmail author
  • Radwan Alnajjar
  • Nagwa S. M. Kawafi
  • Sadegh Kaviani
  • Aleksandra Strogova


The main purpose of this study is a better comprehension of the non-bonded interaction between an anticancer drug Ciclopirox and carbon nanotube [CNT(6,6-6)]. The electronic structure and adsorption properties of the molecule Ciclopirox over the surface of CNT were theoretically studied in the solvent phase at the B3LYP/6-31G* level of theory for the first time. The electronic spectra of the Ciclopirox drug, CNT(6,6-6) and complex CNT(6,6-6)/Ciclopirox in solvent water were calculated by time dependent density functional theory (TD-DFT) for the investigation of adsorption effect. The non-bonded interaction effects of the Ciclopirox drug with CNT(6,6-6) on the chemical shift tensors and natural charge have been also detected. According to the natural bond orbital (NBO) results, the molecule Ciclopirox and CNT(6,6-6) play as both electron donor and acceptor at the complex CNT(6,6-6)/Ciclopirox. On the other hand, the charge transfer is occurred between the bonding, antibonding or nonbonding orbitals in two molecules drug and CNT. As a consequence, CNT(6,6-6) can be considered as a drug delivery system for the transportation of Ciclopirox as anticancer drug within the biological systems.


Ciclopirox CNT(6,6-6) DFT Charge transfer 


Supplementary material

10450_2019_182_MOESM1_ESM.docx (28 kb)
Supplementary material 1 (DOCX 28 kb)


  1. Chandrasekhar, P.: CNT Applications in Drug and Biomolecule Delivery, Conducting Polymers, Fundamentals and Applications. Springer, New York (2018)Google Scholar
  2. Digge, M.S., Moon, R.S., Gattani, S.G.: Applications of carbon nanotubes in drug delivery: a review. Int. J. Pharm. Technol. Res. 4, 839–847 (2012)Google Scholar
  3. Dittmar, W., Lohaus, G.: Google Patents (1975)Google Scholar
  4. El Khalifi, M., Duverger, E., Boulahdour, H., Picaud, F.: Theoretical study of the interaction between carbon nanotubes and carboplatin anticancer molecules. Anal. Methods 7, 10145–10150 (2015)CrossRefGoogle Scholar
  5. Frisch, A., Nielson, A.B., Holder, A.J.: GAUSSVIEW User Manual. Gaussian Inc., Pittsburgh (2000)Google Scholar
  6. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian. Gaussian Inc., Wallingford (2009)Google Scholar
  7. Ji, S., Liu, C., Zhang, B., Yang, F., Xu, J., Long, J., Jin, C., Fu, D., Ni, Q., Yu, X.: Carbon nanotubes in cancer diagnosis and therapy. Biochim. Biophys. Acta 1806, 29–35 (2010)PubMedGoogle Scholar
  8. Lacerda, L., Bianco, A., Prato, M., Kostarelos, K.: Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Adv. Drug Deliv. Rev. 58, 1460–1470 (2006)CrossRefGoogle Scholar
  9. Leem, S.H., Park, J.E., Kim, I.S., Chae, J.Y., Sugino, A., Sunwoo, Y.: The possible mechanism of action of Ciclopirox olamine in the yeast Saccharomyces cerevisiae. Mol. Cells 15, 55–61 (2003)PubMedGoogle Scholar
  10. Liu, Z., Tabakman, S., Welsher, K., Dai, H.: Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano. Res. 2, 85–120 (2009)CrossRefGoogle Scholar
  11. Meng, L., Zhang, X., Lu, Q., Fei, Z., Dyson, P.J.: Single walled carbon nanotubes as drug delivery vehicles: targeting doxorubicin to tumors. Biomaterials 33, 1689–1698 (2012)CrossRefGoogle Scholar
  12. Mishra, A.K.: Nanomedicine for Drug Delivery and Therapeutics. Wiley, Hoboken (2013)CrossRefGoogle Scholar
  13. Niewerth, M., Kunze, D., Seibold, M., Schaller, M., Korting, H.C., Hube, B.: Ciclopirox olamine treatment affects the expression pattern of Candida albicans genes encoding virulence factors, iron metabolism proteins, and drug resistance factors. Antimicrob. Agents Chemother. 47, 1805–1817 (2003)CrossRefGoogle Scholar
  14. Panchapakesan, B., Lu, S., Sivakumar, K., Taker, K., Cesarone, G., Wickstrom, E.: Single-wall carbon nanotube nanobomb agents for killing breast cancer cells. NanoBiotechnology 1, 133–139 (2005)CrossRefGoogle Scholar
  15. Parhi, P., Mohanty, C., Sahoo, S.K.: Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy. Drug Discov. Today 17, 1044–1052 (2012)CrossRefGoogle Scholar
  16. Peretz, S., Regev, O.: Carbon nanotubes as nanocarriers in medicine. Curr. Opin. Colloid Interface Sci. 17, 360–368 (2012)CrossRefGoogle Scholar
  17. Shahab, S., Filippovich, L., Sheikhi, M., Kumar, R., Dikusar, E., Yahyaei, H., Muravsky, A.: Polarization, excited states, trans-cis properties and anisotropy of thermal and electrical conductivity of the 4-(phenyldiazenyl)aniline in PVA matrix. J. Mol. Struct. 1141, 703–709 (2017a)CrossRefGoogle Scholar
  18. Shahab, S., Sheikhi, M., Filippovich, L., Dikusar Anatol’evich, E., Yahyaei, H.: Quantum chemical modeling of new derivatives of (E, E)-azomethines: synthesis, spectroscopic (FT-IR, UV/Vis, polarization) and thermophysical investigations. J. Mol. Struct. 1137, 335–348 (2017b)CrossRefGoogle Scholar
  19. Sharma, S., Mehra, N.K., Jain, K., Jain, N.K.: Effect of functionalization on drug delivery potential of carbon nanotubes. Artif. Cells Nanomed. Biotechnol. 44, 1851–1860 (2016)CrossRefGoogle Scholar
  20. Shayan, K., Nowroozi, A.: Boron nitride nanotubes for delivery of 5-fluorouracil as anticancer drug: a theoretical study. Appl. Surf. Sci. 428, 500–513 (2018)CrossRefGoogle Scholar
  21. Sheikhi, M., Sheikh, D.: Quantum chemical investigations on phenyl-7,8- dihydro-[1,3]-dioxolo[4,5-g] quinolin-6(5 h)-one. Rev. Roum. Chim. 59, 761–767 (2014)Google Scholar
  22. Sheikhi, M., Balali, E., Lari, H.: Theoretical investigations on molecular structure, NBO, HOMO–LUMO and MEP analysis of two crystal structures of N-(2-benzoyl-phenyl) oxalyl: a DFT study. J. Phys. Theor. Chem. 13, 155–171 (2016)Google Scholar
  23. Sheikhi, M., Shahab, S., Khaleghian, M., Kumar, R.: Interaction between new anti-cancer drug syndros and CNT(6,6-6) nanotube for medical applications: geometry optimization, molecular structure, spectroscopic (NMR, UV/Vis, excited state), FMO, MEP and HOMO–LUMO investigation. Appl. Surf. Sci. 434, 504–513 (2018a)CrossRefGoogle Scholar
  24. Sheikhi, M., Shahab, S., Khaleghian, M., Haji Hajikolaee, F., Balakhanava, I., Alnajjar, R.: Adsorption properties of the molecule resveratrol on CNT(8,0-10) nanotube: geometry optimization, molecular structure, spectroscopic (NMR, UV/Vis, excited State), FMO, MEP and HOMO–LUMO investigations. J. Mol. Struct. 1160, 479–487 (2018b)CrossRefGoogle Scholar
  25. Sheikhi, M., Shahab, S., Filippovich, L., Yahyaei, H., Dikusar, E., Khaleghian, M.: New derivatives of (E, E)-azomethines: design, quantum chemical modeling, spectroscopic (FT-IR, UV/Vis, polarization) studies, synthesis and their applications: experimental and theoretical investigations. J. Mol. Struct. 1152, 368–385 (2018c)CrossRefGoogle Scholar
  26. Sheikhi, M., Shahab, S., Alnajjar, R., Ahmadianarog, M.: Adsorption properties of the new anti-cancer drug alectinib on CNT(6,6-6) nanotube: geometry optimization, molecular structure, spectroscopic (NMR, UV/Vis, excited state), FMO, MEP and HOMO–LUMO investigations. J. Clust. Sci. 30, 83–96 (2019)CrossRefGoogle Scholar
  27. Tripisciano, C., Kraemer, K., Taylor, A., Borowiak-Palen, E.: Single-wall carbon nanotubes based anticancer drug delivery system. Chem. Phys. Lett. 478, 200–205 (2009)CrossRefGoogle Scholar
  28. Vashist, S.K., Zheng, D., Pastorin, G., Al-Rubeaan, K., Luong, J.H.T., Sheu, F.: Delivery of drugs and biomolecules using carbon nanotubes. Carbon 49, 4077–4097 (2011)CrossRefGoogle Scholar
  29. Wang, Y., Xu, Z.: Interaction mechanism of doxorubicin and SWCNT: protonation and diameter effects on drug loading and releasing. RSC Adv. 6, 314–322 (2016)CrossRefGoogle Scholar
  30. Weinhold, F., Landis, C.R.: Natural bond orbitals and extensions of localized bonding concepts. Chem. Educ. Res. Pract. 2(2), 91–104 (2001)CrossRefGoogle Scholar
  31. Wilczewska, A.Z., Niemirowicz, K., Markiewicz, K.H.: Nanoparticles as drug delivery systems. Pharmacol. Rep. 64, 1020–1037 (2012)CrossRefGoogle Scholar
  32. Xu, H., Li, L., Fan, G., Chu, X.: DFT study of nanotubes as the drug delivery vehicles of Efavirenz. Comput. Theor. Chem. 1131, 57–68 (2018)CrossRefGoogle Scholar
  33. Zhang, W., Zhang, Z., Zhang, Y.: The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale Res. Lett. 6, 1–22 (2011)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Siyamak Shahab
    • 1
    • 2
    • 3
    Email author
  • Masoome Sheikhi
    • 4
    Email author
  • Radwan Alnajjar
    • 5
    • 6
  • Nagwa S. M. Kawafi
    • 7
  • Sadegh Kaviani
    • 8
  • Aleksandra Strogova
    • 1
  1. 1.Belarusian State University, ISEI BSUMinskRepublic of Belarus
  2. 2.Institute of Physical Organic ChemistryNational Academy of Sciences of BelarusMinskRepublic of Belarus
  3. 3.Institute of Chemistry of New MaterialsNational Academy of Sciences of BelarusMinskRepublic of Belarus
  4. 4.Young Researchers and Elite Club, Gorgan BranchIslamic Azad UniversityGorganIran
  5. 5.Department of Chemistry, Faculty of ScienceUniversity of BenghaziBenghaziLibya
  6. 6.Department of ChemistryUniversity of Cape TownRondeboschSouth Africa
  7. 7.Department of Medicinal Chemistry, Faculty of PharmacyBenghazi UniversityBenghaziLibya
  8. 8.Department of ChemistryFerdowsi University of MashhadMashhadIran

Personalised recommendations