Advertisement

Adsorption

pp 1–16 | Cite as

The thermodynamic, quantum, AIM and NBO study of the interaction of pyrazinamide drug with the pristine and transition metal-doped B12P12

  • Mahdi Rezaei-SametiEmail author
  • Elham Shiravand
Article
  • 8 Downloads

Abstract

In this work, the interaction of pyrazinamide (Pyr) drug with pristine, Sc, Ti, V and Cr-doped B12P12 nanocage is investigated by using density functional theory (DFT) at the cam-B3LYP/Lanl2DZ level of theory. From optimized structure, the adsorption energy, deformation energy, thermodynamic parameters, quantum parameters, reduced density gradient (RDG), natural bond orbital (NBO) and atom in molecule (AIM) parameters are calculated at the above level of theory. The calculated results demonstrate that with doping Ti atom the adsorption and deformation energy of Pyr/BP nanocage complex increase significantly from original values. The thermodynamic parameters revealed that adsorption of Pyr on the surface of doped models of B12P12 nanocage is more favorable than the pristine model. On the other hand, the ΔΔG(sol) values of water and ethanol solvent for adsorption of Pyr drug on the surface of pristine nanocage is negative and for Sc, Ti, V, and Cr doped B12P12 nanocage models are positive. The band gap of all adsorption models are in range 0.97–2.52 eV and the electrical and optical properties of system alter significantly from pristine models. The values of ▽2ρ and HBCP for all adsorption models are positive and negative respectively, it refers to medium strength or partially covalent bond and this result is an agreement with RDG and NBO outputs. The calculated results demonstrate that the Sc, Ti, V, and Cr doped B12P12 nanocages are a good candidate for deliver Pyr drug in the biological system.

Keywords

B12P12 Metal doped Pyrazinamide DFT RDG AIM 

Notes

Acknowledgment

The author thanks the Computational information center of Malayer University for providing the necessary facilities to carry out the research.

Supplementary material

10450_2019_181_MOESM1_ESM.docx (12.1 mb)
Tables S1– S4 and Figures S1–S13 are given in supplementary data. Supplementary material 1 (DOCX 12359 kb)

References

  1. Bader, R.F.W.: Atoms in Molecules: A Quantum Theory. Oxford University Press, Oxford (1990)Google Scholar
  2. Baei, M.T., Soltani, A.R., Torabi, P., Moradi, A.V.: Adsorption properties of SCN on (6,0), (7,0), (8,0), and Al-doped (6,0) zigzag single-walled carbon nanotubes: a density functional study. Monatschefte Für Chem. 142, 979–984 (2011)CrossRefGoogle Scholar
  3. Beheshtian, J., Ahmadi Peyghan, A., Bagheri, Z.: Quantum chemical study of fluorinated AlN nano-cage. Appl. Surf. Sci. 259, 631–636 (2012a)CrossRefGoogle Scholar
  4. Beheshtian, J., Bagheri, Z., Kamfiroozi, M., Ahmadi, A.: A comparative study on the B12 N12, Al12 N12, B12P12 and Al12P12 fullerene-like cages. J. Mol. Model. 18, 2653–2658 (2012b)PubMedCrossRefPubMedCentralGoogle Scholar
  5. Beheshtian, J., Kamfiroozi, M., Bagheri, Z., Ahmadi, A.: Theoretical study of hydrogen adsorption on the B12P12 fullerene-like nanocluster. Comput. Mater. Sci. 54, 115–118 (2012c)CrossRefGoogle Scholar
  6. Bulat, F.A., Toro-Labbé, A., Brinck, T., Murray, J.S., Politzer, P.: Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J. Mol. Model. 16(11), 1679–1691 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bulat, F.A., Burgess, J.S., Matis, B.R., Baldwin, J.W., Macaveiu, L., Murray, J.S., Politzer, P.: Hydrogenation and fluorination of graphene models: analysis via the average local ionization energy. J. Phys. Chem. A 116(33), 8644–8652 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  8. Cossi, M., Barone, V.: Time-dependent density functional theory for molecules in liquid solutions. J. Chem. Phys. 115, 4708–4717 (2001)CrossRefGoogle Scholar
  9. Costales, A., Kandalam, A.K., Franco, R., Pandey, R.: Theoretical study of structural and vibrational properties of (AlP)n, (AlAs)n,(GaP)n, (GaAs)n, (InP)n, and (InAs)n clusters with n = 1, 2, 3. J. Phys. Chem. B 106, 1940–1944 (2002)CrossRefGoogle Scholar
  10. de Assis, J.L., Grobas, P.V.P., Signoretti, A.M., Fernandes, M.A.C., Miranda, B.F., Silva, R.H.F., Valverde, M., Einicker-Lamas, P.A., Beule, D.: Lipoplexes for gene delivery characterized by fluorescence correlation spectroscopy. Biophys. J. 110, 489–490 (2016)CrossRefGoogle Scholar
  11. Frisch, M.J.: GAUSSIAN 09, Revision D.01. Gaussian, Inc., Wallingford CT (2009)Google Scholar
  12. Glendening, E., Reed, A., Carpenter, J., Weinhold, F.: NBO Version 3.1. Gaussian Inc., Pittsburg, PA (2003)Google Scholar
  13. Hsieh, S.C., Wang, S.M., Li, F.Y.: A theoretical investigation of the effect of adsorbed NO2 molecules on electronic transport in semiconducting single-walled carbon nanotubes. Carbon 49, 955–965 (2011)CrossRefGoogle Scholar
  14. Ichida, K., Hosoyamada, M., Hisatome, I., Enomoto, A., Hikita, M., Endou, H., Hosoya, T.: Clinical and molecular analysis of patients with renal hypouricemia in Japan-influence of URAT1 gene on urinary urate excretion. J. Am. Soc. Nephrol. 15(1), 164–173 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  15. Iqbal, M.J., Ayub, K.: Enhanced electronic and non-linear optical properties of alkali metal (Li, Na, K) doped boron nitride nano-cages. J. Alloys Compd. 687, 976–983 (2016)CrossRefGoogle Scholar
  16. Iqbal, M.J., Ludwigd, R., Ayub, K.: Phosphides or nitrides for better NLO properties? A detailed comparative study of alkali metal doped nano-cages. Mater. Res. Bull. 92, 113–122 (2017)CrossRefGoogle Scholar
  17. Johnson, E.R., Keinan, S., Mori-Sanchez, P., Contreras-Garcia, J., Cohen, A.J., Yang, W.: Revealing noncovalent interactions. J. Am. Chem. Soc. 132, 6498–6506 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  18. Kandalam, A.K., Blanco, M.A., Pandey, R.: Theoretical study of AlnNn, GanNn, and InnNn (n = 4, 5, 6) clusters. J. Phys. Chem. B 106, 1945–1953 (2002a)CrossRefGoogle Scholar
  19. Kandalam, A.K., Blanco, M.A., Pandey, R.: Theoretical study of AlnNn, GanNn, and InnNn (n = 4, 5, 6) clusters. J. Phys. Chem. B 106, 1945–1953 (2002b)CrossRefGoogle Scholar
  20. Keresztury, G., Holly, S., Varga, J., Besenyei, G., Wang, A.V., Durig, J.R.: Vibrational spectra of monothiocarbamates-II IR and Raman spectra, vibrational assignment, conformational analysis and ab initio calculations of S-methyl-N, N. Spectrochim. Chim. Acta. 49, 2007–2017 (1993)CrossRefGoogle Scholar
  21. Li, S.: Semiconductor physical electronics, 2nd edn. Springer, Berlin (2006)CrossRefGoogle Scholar
  22. Lu, T., Chen, F.: Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  23. Na, L.J., Rang, C.Z., Fang, Y.S.: Study on the prediction of visible absorption maxima of azobenzene compounds. J. Zhejiang. Univ. Sci. 6, 584–589 (2005)Google Scholar
  24. Najafi, M.: The SH functionalized B24N24 and B24P24 nanocages as potential sensor for oxygen difluoride (OF2) detection in the gas phase and methanol. Vacuum 135, 18–21 (2017)CrossRefGoogle Scholar
  25. Padash, R., Rahimi-Nasrabadi, M., Rad, A.S., Sobhani-Nasab, A., Jesionowski, T., Ehrlich, H.: Comparative computational investigation of phosgene adsorption on (XY)12 (X = Al, B and Y = N, P) nanoclusters: DFT investigations. J. Clust Sci. 30, 203–218 (2019)CrossRefGoogle Scholar
  26. Palmer, S., Sokolovski, S.G., Rafailov, E., Nabi, G.: Technologic developments in the field of photonics for the detection of urinary bladder cancer. Clin. Genitourin. Cancer 11, 390–396 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  27. Qiang, Y., Antony, J., Sharma, A., Nutting, J., Sikes, D., Meyer, D.: Iron/iron oxide core-shell nanoclusters for biomedical applications. J. Nanoparticle Res. 8, 489–496 (2006)CrossRefGoogle Scholar
  28. Rad, A.S.: Study on the surface interaction of Furan with X12Y12 (X = B, Al, and Y = N, P) semiconductors. Heteroat. chem. 27, 316–322 (2016)CrossRefGoogle Scholar
  29. Rad, A.S., Ayub, K.: Ni adsorption on Al12P12 nano-cage: a DFT study. J. Alloys Compd. 678, 317–324 (2016)CrossRefGoogle Scholar
  30. Rad, A.S., Shabestari, S.S., Mohseni, S., Aghouzi, S.A.: Study on the adsorption properties of O3, SO2, and SO3 on B-doped graphene using DFT calculations. J. Solid State Chem. 237, 204–210 (2016)CrossRefGoogle Scholar
  31. Rad, A.S., Aghaei, S.M., Poralijan, V., Peyravi, M., Mirzae, M.: Application of pristine and Ni-decorated B12P12 nano-clusters as superior media for acetylene and ethylene adsorption: DFT calculations. Comput. Theor. Chem. 1109, 1–9 (2017)CrossRefGoogle Scholar
  32. Rakhshi, M., Mohsennia, M., Rasa, H., Rezaei Sameti, M.: First-principle study of ammonia molecules adsorption on boron nitride nanotubes in presence and absence of static electric field and ion field. Vacuum 155, 456–464 (2018)CrossRefGoogle Scholar
  33. Rezaei-Sameti, M., Amirian, B.: A quantum, NBO, RDG study of interaction cadmium ion with the pristine, C, P and C&P doped (4, 4) armchair boron nitride nanotube (BNNTs). Asian J. Nanosci. Mater. 1(4), 262–270 (2018)Google Scholar
  34. Rezaei-Sameti, M., Yaghoobi, S.: Theoretical study of adsorption of CO gas on pristine and AsGa-doped (4, 4) armchair models of BPNTs. Comput. Condens. Matter. 3, 21–29 (2015)CrossRefGoogle Scholar
  35. Rezaei-Sameti, M., Zanganeh, F.: A computational study of adsorption H2S gas on the surface of the pristine, Al&P-doped armchair and zigzag BNNTs. J. Sulfur Chem. 38, 384–400 (2017)CrossRefGoogle Scholar
  36. Rezaei-Sameti, M., Zarei, P.: NBO, AIM, HOMO–LUMO and thermodynamic investigation of the nitrate ion adsorption on the surface of pristine. Al and Ga doped BNNTs: a DFT study. Adsorption 24(8), 757–767 (2018)CrossRefGoogle Scholar
  37. Rule, A.M.: American society of health-system pharmacists’ pain management network. J. Pain Palliat Care Pharmacother. 18(3), 59–62 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  38. Shokuhi Rad, A., Ayub, K.: A comparative density functional theory study of guanine chemisorption on Al12N12, Al12P12, B12N12, and B12P12 nano-cages. J. Alloys. Compd. 672, 161–169 (2016a)CrossRefGoogle Scholar
  39. Shokuhi Rad, A., Ayub, K.: Adsorption of pyrrole on Al12N12, Al12P12, B12N12, and B12P12 fullerene-like nano-cages; a first principles study. Vacuum 131, 135–141 (2016b)CrossRefGoogle Scholar
  40. Soltani, A., Baei, M.T., Mirarab, M., Sheikhi, M., Lemeski, E.T.: The electronic and structural properties of BN and BP nano-cages interacting with OCN: A DFT study. J. Phys. Chem. Solids 75, 1099–1105 (2014)CrossRefGoogle Scholar
  41. Spaia, S., Magoula, I., Tsapas, G., Vayonas, G.: Effect of pyrazinamide and probenecid on peritoneal urate transport kinetics during continuous ambulatory peritoneal dialysis. Perit. Dial. Int. 20(1), 47–52 (2000)PubMedPubMedCentralGoogle Scholar
  42. Stuart, M.C., Kouimtzi, M., Hill, S.R.: WHO Model Formulary, 136, 140, 594 (2009)Google Scholar
  43. Sun, Y.T., Huang, P.Y., Lin, C.H., Lee, K.R., Lee, M.T.: Studying antibiotic-membrane interactions via X-Ray diffraction and fluorescence microscopy. Biophys. J. 110, 414–418 (2015)CrossRefGoogle Scholar
  44. Talla, J.A.: Ab initio simulations of doped single-walled carbon nanotube sensors. Chem. Phys. 392, 71–77 (2012)CrossRefGoogle Scholar
  45. Varghese, S.S., Lonkar, S., Singh, K.K., Swaminathan, S., Abdala, A.: Recent advances in graphene based gas sensors. Sens. Actuators B Chem. 218, 160–183 (2015)CrossRefGoogle Scholar
  46. Wu, H., Fan, X., Kuo, J.L.: Metal free hydrogenation reaction on carbon doped boron nitride fullerene: a DFT study on the kinetic issue. Int. J. Hydrog. Energy 37, 14336–14342 (2012)CrossRefGoogle Scholar
  47. Yong, Y., Liu, K., Song, B., He, P., Wang, P., Li, H.: Coalescence of BnNn fullerenes: a new pathway to produce boron nitride nanotubes with small diameter. Phys. Lett. A 376, 1465–1467 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Applied Chemistry, Faculty of ScienceMalayer UniversityMalayerIran

Personalised recommendations