Advertisement

Adsorption

pp 1–13 | Cite as

Predicting the adsorption capacity of iron nanoparticles with metallic impurities (Cu, Ni and Pd) for arsenic removal: a DFT study

  • Leslie L. Alfonso Tobón
  • María M. BrandaEmail author
Article
  • 41 Downloads

Abstract

The potential capacities of bimetallic nanoclusters, constituted by Fe doped with metal atoms of Cu, Ni and Pd, for the H3AsO3 adsorption and reduction, were studied by density functional theory calculations. Both the pure Fe nanocluster and the one doped with a Ni atom on an edge, show greater adsorbent and reducing capacities than the others substrates. Then, the structural and electronic properties of bimetallic core–shell nanoparticles constituted by 80 atoms were also studied. The highest adsorption capacity was found on cFe/sNi core–shell nanoparticle, decreasing the activity in this order: cFe/sNi > cNi/sFe > cFe/sCu > cCu/sFe. The interaction found between the atom of As and the surface atom of Ni coincides with a significant hybridization between the s–p As states and the sp and d bands of the metal atom. The charge transfer from the core atoms to the surface generates a charge accumulation on the cFe/sNi surface, and a surface–subsurface dipole. We have also observed that higher adsorption energies correspond linearly with more pronounced displacement of the d band center from the Fermi level. Finally, we want to highlight the reductive capacity of this material (cFe/sNi) to adsorption Arsenious acid, which is certainly favorable for the immobilization of this pollutant.

Keywords

Nanoparticles Arsenic Iron Charge density difference Projected density of states Density functional theory 

Notes

Acknowledgements

The authors are grateful for financial support by CONICET and the PICT 2014 – 1778.

References

  1. Alfonso, L.L., Fuente, S., Branda, M.M.: Applied surface science electronic and magnetic properties of the adsorption of As harmful species on zero-valent Fe surfaces, clusters and nanoparticules. Appl. Surf. Sci. 465, 715–723 (2019).  https://doi.org/10.1016/j.apsusc.2018.09.199 CrossRefGoogle Scholar
  2. Allred, A.L.: Electronegativity values from termochemical data. Inorg. Nucl. Chem. 17, 215–221 (1961).  https://doi.org/10.1016/0022-1902(61)80142-5 CrossRefGoogle Scholar
  3. Babaee, Y., Mulligan, C.N., Rahaman, M.S.: Removal of arsenic (III) and arsenic (V) from aqueous solutions through adsorption by Fe/Cu nanoparticles. J. Chem. Technol. Biotechnol. 93, 63–71 (2018).  https://doi.org/10.1002/jctb.5320 CrossRefGoogle Scholar
  4. Blöchl, P.: Projector augmented wave method. Phys. Rev. B Condens. Matter. Mater. Phys. 50(24), 17953–17979 (1994).  https://doi.org/10.1103/PhysRevB.48.13115 CrossRefGoogle Scholar
  5. Chekli, L., Bayatsarmadi, B., Sekine, R., Sarkar, B., Shen, A.M., Scheckel, K.G., Skinner, W., Naidu, R., Shon, H.K., Lombi, E., Donner, E.: Analytical characterisation of nanoscale zero-valent iron: a methodological review. Anal. Chim. Acta 903, 13–35 (2016).  https://doi.org/10.1016/j.aca.2015.10.040 CrossRefPubMedGoogle Scholar
  6. Cho, Y., Choi, S.: Chemosphere degradation of PCE, TCE and 1, 1, 1-TCA by nanosized FePd bimetallic particles under various experimental conditions. Chemosphere 81, 940–945 (2010).  https://doi.org/10.1016/j.chemosphere.2010.07.054 CrossRefPubMedGoogle Scholar
  7. Clare, M., Escano, S., Nakanishi, H., Kasai, H.: Spin-polarized density functional theory study of reactivity of diatomic molecule on bimetallic system: the case of O2 dissociative adsorption on Pt monolayer on Fe (001). J. Phys. Chem. A (2009).  https://doi.org/10.1021/jp9030267 CrossRefGoogle Scholar
  8. Fernandes, F.W., Campos, T.M.B., Cividanes, L.S., Simonetti, E.A.N., Thim, G.P.: Adsorbed water on iron surface by molecular dynamics. Appl. Surf. Sci. 362, 70–78 (2016).  https://doi.org/10.1016/j.apsusc.2015.11.143 CrossRefGoogle Scholar
  9. Ferrando, R., Jellinek, J., Johnston, R.L.: Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem. Rev. 108, 845–910 (2008).  https://doi.org/10.1021/cr040090g CrossRefPubMedGoogle Scholar
  10. Florez, E., Mondrago, F., Fuentealba, P.: Effect of Ni and Pd on the geometry, electronic properties, and active sites of copper clusters. J. Phys. Chem. B (2006).  https://doi.org/10.1021/jp060521u CrossRefPubMedGoogle Scholar
  11. Gai, C., Zhang, F., Yang, T., Liu, Z., Jiao, W., Peng, N., Liu, T., Lang, Q., Xia, Y.: Hydrochar supported bimetallic Ni-Fe nanocatalysts with tailored composition, size and shape for improved biomass steam reforming performance. Green Chem. 20, 2788–2800 (2018).  https://doi.org/10.1039/c8gc00433a CrossRefGoogle Scholar
  12. Grimme, S.: Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).  https://doi.org/10.1002/jcc CrossRefPubMedGoogle Scholar
  13. Hacene, M., Anciaux-Sedrakian, A., Rozanska, X., Klahr, D., Guignon, T., Fleurat-Lessard, P.: Accelerating VASP electronic structure calculations using graphic processing units. J. Comput. Chem. 33, 2581–2589 (2012).  https://doi.org/10.1002/jcc.23096 CrossRefPubMedGoogle Scholar
  14. Hammer, B., Nørskov, J.K.: Theoretical surface science and catalysis—calculations and concepts. Adv. Catal. (2000).  https://doi.org/10.1016/s0360-0564(02)45013-4 CrossRefGoogle Scholar
  15. Hao, L., Liu, M., Wang, N., Li, G.: A critical review on arsenic removal from water using iron-based adsorbents. RSC Adv. 8, 39545–39560 (2018).  https://doi.org/10.1039/c8ra08512a CrossRefGoogle Scholar
  16. Huo, L., Zeng, X., Su, S., Bai, L., Wang, Y.: Enhanced removal of As (V) from aqueous solution using modified hydrous ferric oxide nanoparticles. Sci. Rep. 7, 1–12 (2017).  https://doi.org/10.1038/srep40765 CrossRefGoogle Scholar
  17. Hutchinson, M., Widom, M.: VASP on a GPU: application to exact-exchange calculations of the stability of elemental boron. Comput. Phys. Commun. 183, 1422–1426 (2012).  https://doi.org/10.1016/j.cpc.2012.02.017 CrossRefGoogle Scholar
  18. Khan, I., Saeed, K., Khan, I.: Nanoparticles: properties, applications and toxicities. Arab. J. Chem. (2017).  https://doi.org/10.1016/j.arabjc.2017.05.011 CrossRefGoogle Scholar
  19. Kim, D., Resasco, J., Yu, Y., Asiri, A.M., Yang, P.: Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles. Nat. Commun. (2014).  https://doi.org/10.1038/ncomms5948 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kokalj, A.: Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. Comput. Mater. Sci. 28, 155–168 (2003).  https://doi.org/10.1016/S0927-0256(03)00104-6 CrossRefGoogle Scholar
  21. Kresse, G., Hafner, J.: Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 48–51 (1993).  https://doi.org/10.1103/PhysRevB.48.13115 CrossRefGoogle Scholar
  22. Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 11–19 (1999).  https://doi.org/10.1103/PhysRevB.59.1758 CrossRefGoogle Scholar
  23. Ling, L., Zhang, W.X.: Sequestration of arsenate in Zero-valent iron nanoparticles: visualization of intraparticle reactions at angstrom resolution. Environ. Sci. Technol. Lett. 1, 305–309 (2014).  https://doi.org/10.1021/ez5001512 CrossRefGoogle Scholar
  24. Liu, L., Corma, A.: Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018).  https://doi.org/10.1021/acs.chemrev.7b00776 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Lowdin, P.: On the nonorthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals. J. Chem. Phys. (1950).  https://doi.org/10.1063/1.1747632 CrossRefGoogle Scholar
  26. Mandal, B.K., Suzuki, K.T.: Arsenic round the world: a review. Talanta 58, 201–235 (2002).  https://doi.org/10.1016/S0039-9140(02)00268-0 CrossRefPubMedGoogle Scholar
  27. Mendoza-Pérez, R., Guisbiers, G.: Bimetallic Pt-Pd nano-catalyst: size, shape and composition matter. Nanotechnology (2019).  https://doi.org/10.1088/1361-6528/ab1759 CrossRefPubMedGoogle Scholar
  28. Methfessel, M., Paxton, A.T.: High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40, 3616–3621 (1989).  https://doi.org/10.1103/PhysRevB.40.3616 CrossRefGoogle Scholar
  29. Momma, K., Izumi, F.: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).  https://doi.org/10.1107/S0021889811038970 CrossRefGoogle Scholar
  30. Otero, G.S., Pascucci, B., Branda, M.M., Miotto, R., Belelli, P.G.: Evaluating the size of Fe nanoparticles for ammonia adsorption and dehydrogenation. Comput. Mater. Sci. 124, 220–227 (2016).  https://doi.org/10.1016/j.commatsci.2016.07.040 CrossRefGoogle Scholar
  31. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(3), 3865–3868 (1996).  https://doi.org/10.1103/PhysRevLett.77.3865 CrossRefGoogle Scholar
  32. Saif, S., Tahir, A., Chen, Y.: Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials (2016).  https://doi.org/10.3390/nano6110209 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Sepúlveda, P., Rubio, M.A., Baltazar, S.E., Rojas-Nunez, J., Sánchez Llamazares, J.L., Garcia, A.G., Arancibia-Miranda, N.: As(V) removal capacity of FeCu bimetallic nanoparticles in aqueous solutions: the influence of Cu content and morphologic changes in bimetallic nanoparticles. J. Colloid Interface Sci. 524, 177–187 (2018).  https://doi.org/10.1016/j.jcis.2018.03.113 CrossRefPubMedGoogle Scholar
  34. Sharma, G., Kumar, A., Sharma, S., Naushad, M., Dwivedi, R.P., Alothman, Z.A., Mola, G.T.: A review on the advancement of nanoparticles and their composites: synthesis and applications. J. King Saud Univ. Sci. 31, 143–284 (2017).  https://doi.org/10.1016/j.jksus.2017.06.012 CrossRefGoogle Scholar
  35. Sidhu, M.S., Desai, K.P., Lynch, H.N., Rhomberg, L.R., Beck, B.D., Venditti, F.J.: Mechanisms of action for arsenic in cardiovascular toxicity and implications for risk assessment. Toxicology 331, 78–99 (2015).  https://doi.org/10.1016/j.tox.2015.02.008 CrossRefPubMedGoogle Scholar
  36. Singh, R., Kroll, P.: Structural, electronic, and magnetic properties of 13-, 55-, and 147-atom clusters of Fe Co, and Ni: a spin-polarized density functional study. Phys. Rev. B (2008).  https://doi.org/10.1103/physrevb.78.245404 CrossRefGoogle Scholar
  37. Srinoi, P., Chen, Y.-T., Vittur, V., Marquez, M., Lee, T.: Bimetallic nanoparticles: enhanced magnetic and optical properties for emerging biological applications. Appl. Sci. 8, 1106 (2018).  https://doi.org/10.3390/app8071106 CrossRefGoogle Scholar
  38. Tahmasebi, S., Jerkiewicz, G., Baranton, S., Coutanceau, C., Furuya, Y., Ohma, A.: C: surfaces, interfaces, porous materials, and catalysis how stable are spherical platinum nanoparticles applicable to fuel cells? How stable are spherical platinum nanoparticles applicable to fuel cells? Poitiers (2018).  https://doi.org/10.1021/acs.jpcc.7b10617 CrossRefGoogle Scholar
  39. Tang, W., Sanville, E., Henkelman, G.: A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter. (2009).  https://doi.org/10.1088/0953-8984/21/8/084204 CrossRefPubMedGoogle Scholar
  40. Teeriniemi, J., Melander, M., Lipasti, S., Hatz, R., Laasonen, K.: Fe-Ni nanoparticles: a multiscale first-principles study to predict geometry, structure, and catalytic activity. J. Phys. Chem. C 121, 1667–1674 (2017).  https://doi.org/10.1021/acs.jpcc.6b10926 CrossRefGoogle Scholar
  41. Watts, H., Tribe, L., Kubicki, J.: Arsenic adsorption onto minerals: connecting experimental observations with density functional theory calculations. Minerals 4, 208–240 (2014).  https://doi.org/10.3390/min4020208 CrossRefGoogle Scholar
  42. Wu, C., Tu, J., Liu, W., Zhang, J., Chu, S., Lu, G., Lin, Z., Dang, Z.: The double influence mechanism of pH on arsenic removal by nano zero valent iron: electrostatic interactions and the corrosion of Fe0. Environ. Sci. Nano 4, 1544–1552 (2017).  https://doi.org/10.1039/c7en00240h CrossRefGoogle Scholar
  43. Zhao, Y., Wang, Y., Ran, F., Cui, Y., Liu, C., Zhao, Q., Gao, Y., Wang, D.: A comparison between sphere and rod nanoparticles regarding their in vivo biological behavior and pharmacokinetics. Sci. Rep. (2017).  https://doi.org/10.1038/s41598-017-03834-2 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Zou, Y., Wang, X., Khan, A., Wang, P., Liu, Y., Alsaedi, A., Hayat, T., Wang, X.: Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review. Environ. Sci. Technol. 50, 7290–7304 (2016).  https://doi.org/10.1021/acs.est.6b01897 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.IFISUR, CONICET. Av. Alem 1253Bahía BlancaArgentina
  2. 2.INFAP, CONICET. AvSan LuisArgentina

Personalised recommendations