pp 1–13 | Cite as

Predicting the adsorption capacity of iron nanoparticles with metallic impurities (Cu, Ni and Pd) for arsenic removal: a DFT study

  • Leslie L. Alfonso Tobón
  • María M. BrandaEmail author


The potential capacities of bimetallic nanoclusters, constituted by Fe doped with metal atoms of Cu, Ni and Pd, for the H3AsO3 adsorption and reduction, were studied by density functional theory calculations. Both the pure Fe nanocluster and the one doped with a Ni atom on an edge, show greater adsorbent and reducing capacities than the others substrates. Then, the structural and electronic properties of bimetallic core–shell nanoparticles constituted by 80 atoms were also studied. The highest adsorption capacity was found on cFe/sNi core–shell nanoparticle, decreasing the activity in this order: cFe/sNi > cNi/sFe > cFe/sCu > cCu/sFe. The interaction found between the atom of As and the surface atom of Ni coincides with a significant hybridization between the s–p As states and the sp and d bands of the metal atom. The charge transfer from the core atoms to the surface generates a charge accumulation on the cFe/sNi surface, and a surface–subsurface dipole. We have also observed that higher adsorption energies correspond linearly with more pronounced displacement of the d band center from the Fermi level. Finally, we want to highlight the reductive capacity of this material (cFe/sNi) to adsorption Arsenious acid, which is certainly favorable for the immobilization of this pollutant.


Nanoparticles Arsenic Iron Charge density difference Projected density of states Density functional theory 



The authors are grateful for financial support by CONICET and the PICT 2014 – 1778.


  1. Alfonso, L.L., Fuente, S., Branda, M.M.: Applied surface science electronic and magnetic properties of the adsorption of As harmful species on zero-valent Fe surfaces, clusters and nanoparticules. Appl. Surf. Sci. 465, 715–723 (2019). CrossRefGoogle Scholar
  2. Allred, A.L.: Electronegativity values from termochemical data. Inorg. Nucl. Chem. 17, 215–221 (1961). CrossRefGoogle Scholar
  3. Babaee, Y., Mulligan, C.N., Rahaman, M.S.: Removal of arsenic (III) and arsenic (V) from aqueous solutions through adsorption by Fe/Cu nanoparticles. J. Chem. Technol. Biotechnol. 93, 63–71 (2018). CrossRefGoogle Scholar
  4. Blöchl, P.: Projector augmented wave method. Phys. Rev. B Condens. Matter. Mater. Phys. 50(24), 17953–17979 (1994). CrossRefGoogle Scholar
  5. Chekli, L., Bayatsarmadi, B., Sekine, R., Sarkar, B., Shen, A.M., Scheckel, K.G., Skinner, W., Naidu, R., Shon, H.K., Lombi, E., Donner, E.: Analytical characterisation of nanoscale zero-valent iron: a methodological review. Anal. Chim. Acta 903, 13–35 (2016). CrossRefPubMedGoogle Scholar
  6. Cho, Y., Choi, S.: Chemosphere degradation of PCE, TCE and 1, 1, 1-TCA by nanosized FePd bimetallic particles under various experimental conditions. Chemosphere 81, 940–945 (2010). CrossRefPubMedGoogle Scholar
  7. Clare, M., Escano, S., Nakanishi, H., Kasai, H.: Spin-polarized density functional theory study of reactivity of diatomic molecule on bimetallic system: the case of O2 dissociative adsorption on Pt monolayer on Fe (001). J. Phys. Chem. A (2009). CrossRefGoogle Scholar
  8. Fernandes, F.W., Campos, T.M.B., Cividanes, L.S., Simonetti, E.A.N., Thim, G.P.: Adsorbed water on iron surface by molecular dynamics. Appl. Surf. Sci. 362, 70–78 (2016). CrossRefGoogle Scholar
  9. Ferrando, R., Jellinek, J., Johnston, R.L.: Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem. Rev. 108, 845–910 (2008). CrossRefPubMedGoogle Scholar
  10. Florez, E., Mondrago, F., Fuentealba, P.: Effect of Ni and Pd on the geometry, electronic properties, and active sites of copper clusters. J. Phys. Chem. B (2006). CrossRefPubMedGoogle Scholar
  11. Gai, C., Zhang, F., Yang, T., Liu, Z., Jiao, W., Peng, N., Liu, T., Lang, Q., Xia, Y.: Hydrochar supported bimetallic Ni-Fe nanocatalysts with tailored composition, size and shape for improved biomass steam reforming performance. Green Chem. 20, 2788–2800 (2018). CrossRefGoogle Scholar
  12. Grimme, S.: Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006). CrossRefPubMedGoogle Scholar
  13. Hacene, M., Anciaux-Sedrakian, A., Rozanska, X., Klahr, D., Guignon, T., Fleurat-Lessard, P.: Accelerating VASP electronic structure calculations using graphic processing units. J. Comput. Chem. 33, 2581–2589 (2012). CrossRefPubMedGoogle Scholar
  14. Hammer, B., Nørskov, J.K.: Theoretical surface science and catalysis—calculations and concepts. Adv. Catal. (2000). CrossRefGoogle Scholar
  15. Hao, L., Liu, M., Wang, N., Li, G.: A critical review on arsenic removal from water using iron-based adsorbents. RSC Adv. 8, 39545–39560 (2018). CrossRefGoogle Scholar
  16. Huo, L., Zeng, X., Su, S., Bai, L., Wang, Y.: Enhanced removal of As (V) from aqueous solution using modified hydrous ferric oxide nanoparticles. Sci. Rep. 7, 1–12 (2017). CrossRefGoogle Scholar
  17. Hutchinson, M., Widom, M.: VASP on a GPU: application to exact-exchange calculations of the stability of elemental boron. Comput. Phys. Commun. 183, 1422–1426 (2012). CrossRefGoogle Scholar
  18. Khan, I., Saeed, K., Khan, I.: Nanoparticles: properties, applications and toxicities. Arab. J. Chem. (2017). CrossRefGoogle Scholar
  19. Kim, D., Resasco, J., Yu, Y., Asiri, A.M., Yang, P.: Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles. Nat. Commun. (2014). CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kokalj, A.: Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. Comput. Mater. Sci. 28, 155–168 (2003). CrossRefGoogle Scholar
  21. Kresse, G., Hafner, J.: Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 48–51 (1993). CrossRefGoogle Scholar
  22. Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 11–19 (1999). CrossRefGoogle Scholar
  23. Ling, L., Zhang, W.X.: Sequestration of arsenate in Zero-valent iron nanoparticles: visualization of intraparticle reactions at angstrom resolution. Environ. Sci. Technol. Lett. 1, 305–309 (2014). CrossRefGoogle Scholar
  24. Liu, L., Corma, A.: Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018). CrossRefPubMedPubMedCentralGoogle Scholar
  25. Lowdin, P.: On the nonorthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals. J. Chem. Phys. (1950). CrossRefGoogle Scholar
  26. Mandal, B.K., Suzuki, K.T.: Arsenic round the world: a review. Talanta 58, 201–235 (2002). CrossRefPubMedGoogle Scholar
  27. Mendoza-Pérez, R., Guisbiers, G.: Bimetallic Pt-Pd nano-catalyst: size, shape and composition matter. Nanotechnology (2019). CrossRefPubMedGoogle Scholar
  28. Methfessel, M., Paxton, A.T.: High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40, 3616–3621 (1989). CrossRefGoogle Scholar
  29. Momma, K., Izumi, F.: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011). CrossRefGoogle Scholar
  30. Otero, G.S., Pascucci, B., Branda, M.M., Miotto, R., Belelli, P.G.: Evaluating the size of Fe nanoparticles for ammonia adsorption and dehydrogenation. Comput. Mater. Sci. 124, 220–227 (2016). CrossRefGoogle Scholar
  31. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(3), 3865–3868 (1996). CrossRefGoogle Scholar
  32. Saif, S., Tahir, A., Chen, Y.: Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials (2016). CrossRefPubMedPubMedCentralGoogle Scholar
  33. Sepúlveda, P., Rubio, M.A., Baltazar, S.E., Rojas-Nunez, J., Sánchez Llamazares, J.L., Garcia, A.G., Arancibia-Miranda, N.: As(V) removal capacity of FeCu bimetallic nanoparticles in aqueous solutions: the influence of Cu content and morphologic changes in bimetallic nanoparticles. J. Colloid Interface Sci. 524, 177–187 (2018). CrossRefPubMedGoogle Scholar
  34. Sharma, G., Kumar, A., Sharma, S., Naushad, M., Dwivedi, R.P., Alothman, Z.A., Mola, G.T.: A review on the advancement of nanoparticles and their composites: synthesis and applications. J. King Saud Univ. Sci. 31, 143–284 (2017). CrossRefGoogle Scholar
  35. Sidhu, M.S., Desai, K.P., Lynch, H.N., Rhomberg, L.R., Beck, B.D., Venditti, F.J.: Mechanisms of action for arsenic in cardiovascular toxicity and implications for risk assessment. Toxicology 331, 78–99 (2015). CrossRefPubMedGoogle Scholar
  36. Singh, R., Kroll, P.: Structural, electronic, and magnetic properties of 13-, 55-, and 147-atom clusters of Fe Co, and Ni: a spin-polarized density functional study. Phys. Rev. B (2008). CrossRefGoogle Scholar
  37. Srinoi, P., Chen, Y.-T., Vittur, V., Marquez, M., Lee, T.: Bimetallic nanoparticles: enhanced magnetic and optical properties for emerging biological applications. Appl. Sci. 8, 1106 (2018). CrossRefGoogle Scholar
  38. Tahmasebi, S., Jerkiewicz, G., Baranton, S., Coutanceau, C., Furuya, Y., Ohma, A.: C: surfaces, interfaces, porous materials, and catalysis how stable are spherical platinum nanoparticles applicable to fuel cells? How stable are spherical platinum nanoparticles applicable to fuel cells? Poitiers (2018). CrossRefGoogle Scholar
  39. Tang, W., Sanville, E., Henkelman, G.: A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter. (2009). CrossRefPubMedGoogle Scholar
  40. Teeriniemi, J., Melander, M., Lipasti, S., Hatz, R., Laasonen, K.: Fe-Ni nanoparticles: a multiscale first-principles study to predict geometry, structure, and catalytic activity. J. Phys. Chem. C 121, 1667–1674 (2017). CrossRefGoogle Scholar
  41. Watts, H., Tribe, L., Kubicki, J.: Arsenic adsorption onto minerals: connecting experimental observations with density functional theory calculations. Minerals 4, 208–240 (2014). CrossRefGoogle Scholar
  42. Wu, C., Tu, J., Liu, W., Zhang, J., Chu, S., Lu, G., Lin, Z., Dang, Z.: The double influence mechanism of pH on arsenic removal by nano zero valent iron: electrostatic interactions and the corrosion of Fe0. Environ. Sci. Nano 4, 1544–1552 (2017). CrossRefGoogle Scholar
  43. Zhao, Y., Wang, Y., Ran, F., Cui, Y., Liu, C., Zhao, Q., Gao, Y., Wang, D.: A comparison between sphere and rod nanoparticles regarding their in vivo biological behavior and pharmacokinetics. Sci. Rep. (2017). CrossRefPubMedPubMedCentralGoogle Scholar
  44. Zou, Y., Wang, X., Khan, A., Wang, P., Liu, Y., Alsaedi, A., Hayat, T., Wang, X.: Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review. Environ. Sci. Technol. 50, 7290–7304 (2016). CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.IFISUR, CONICET. Av. Alem 1253Bahía BlancaArgentina
  2. 2.INFAP, CONICET. AvSan LuisArgentina

Personalised recommendations