Advertisement

Adsorption

pp 1–13 | Cite as

Silica supported poly(propylene guanidine) as a CO2 sorbent in simulated flue gas and direct air capture

  • Sang Jae Park
  • Jason J. Lee
  • Caroline B. Hoyt
  • Dharam R. Kumar
  • Christopher W. JonesEmail author
Article
  • 55 Downloads

Abstract

A guanidine-based oligomer/polymer, poly(propylene guanidine) (PPG), is synthesized and impregnated into mesoporous silica, SBA-15, to prepare a composite organic/inorganic CO2 sorbent. 1H NMR and ESI-TOF MS spectra are used to characterize the structure of the synthesized oligomer/polymer. The adsorption capacities of the PPG based sorbents are measured under both simulated flue gas conditions and direct air capture conditions, and are compared to the performance of poly(ethylene imine) (PEI) based sorbents, the current state of art material among supported amine compositions. While PPG sorbents show lower pseudo-equilibrium capacities than PEI based sorbents under 400 ppm CO2 flow, they show comparable adsorption capacities using 10% CO2 streams. Furthermore, PPG sorbents were able to reach their pseudo-equilibrium capacity in a shorter time than the PEI sorbents under both 10% and 400 ppm CO2. However, due to the higher volatility of the prepared oligomeric PPG, the PPG sorbents show a fast decrease in the adsorption capacity when used over multiple cycles, suggesting that improved performance may be obtained using higher molecular weight oligomers/polymers.

Keywords

CO2 capture Direct air capture Supported amine Poly(ethylene imine) Guanidine 

Notes

Acknowledgements

This work was supported by the Center for Understanding and Control of Acid Gas-Induced Evolution of Materials for Energy (UNCAGE-ME), an Energy Frontier Research Center, funded by U.S. Department of Energy (US DoE), Office of Science, Basic Energy Sciences (BES) under Award DE-SC0012577.

Supplementary material

10450_2019_171_MOESM1_ESM.docx (504 kb)
Supplementary material 1 (DOCX 504 kb)

References

  1. Alkhabbaz, M.A., Khunsupat, R., Jones, C.W.: Guanidinylated poly(allylamine) supported on mesoporous silica for CO2capture from flue gas. Fuel 121, 79–85 (2014).  https://doi.org/10.1016/j.fuel.2013.12.018 CrossRefGoogle Scholar
  2. An, J., Rosi, N.L.: Tuning MOF CO2 adsorption properties via cation exchange. J. Am. Chem. Soc. 132, 5578–5579 (2010).  https://doi.org/10.1021/ja1012992 CrossRefPubMedGoogle Scholar
  3. Atluri, R., Garcia-bennett, A.E., Hedin, N.: Temperature-induced uptake of CO2 and formation of carbamates in mesocaged silica modified with n-propylamines. Lagmuir 26, 10013–10024 (2010).  https://doi.org/10.1021/la1001495 CrossRefGoogle Scholar
  4. Aziz, B., Hedin, N., Bacsik, Z.: Microporous and mesoporous materials quantification of chemisorption and physisorption of carbon dioxide on porous silica modified by propylamines: effect of amine density. Microporous Mesoporous Mater. 159, 42–49 (2012).  https://doi.org/10.1016/j.micromeso.2012.04.007 CrossRefGoogle Scholar
  5. Barbarini, A., Maggi, R., Mazzacani, A., Mori, G., Sartori, G., Sartorio, R.: Cycloaddition of CO2 to epoxides over both homogeneous and silica-supported guanidine catalysts. Tetrahedron Lett. 44, 2931–2934 (2003).  https://doi.org/10.1016/S0040-4039(03)00424-6 CrossRefGoogle Scholar
  6. Bollini, P., Didas, S.A., Jones, C.W.: Amine-oxide hybrid materials for acid gas separations. J. Mater. Chem. 21, 15100–15120 (2011).  https://doi.org/10.1039/c1jm12522b CrossRefGoogle Scholar
  7. Caskey, S.R., Wong-Foy, A.G., Matzger, A.J.: Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. J. Am. Chem. Soc. 130, 10870–10871 (2008).  https://doi.org/10.1021/ja8036096 CrossRefGoogle Scholar
  8. Cavenati, S., Grande, C.A., Rodrigues, A.E.: Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures. J. Chem. Eng. Data 49, 1095–1101 (2004).  https://doi.org/10.1021/je0498917 CrossRefGoogle Scholar
  9. Chaikittisilp, W., Khunsupat, R., Chen, T.T., Jones, C.W.: Poly(allylamine)–mesoporous silica composite materials for CO2 capture from simulated flue gas or ambient air. Ind. Eng. Chem. Res. 50, 14203–14210 (2011a).  https://doi.org/10.1021/ie201584t CrossRefGoogle Scholar
  10. Chaikittisilp, W., Kim, H.J., Jones, C.W.: Mesoporous alumina-supported amines as potential steam-stable adsorbents for capturing CO2 from simulated flue gas and ambient air. Energy Fuels 25, 5528–5537 (2011b).  https://doi.org/10.1021/ef201224v CrossRefGoogle Scholar
  11. Chi, S., Rochelle, G.T.: Oxidative degradation of monoethanolamine. Ind. Eng. Chem. Res. 41, 4178–4186 (2002).  https://doi.org/10.1021/ie010697c CrossRefGoogle Scholar
  12. Costa, M., Chiusoli, G.P., Dalmonego, G.: Superbase catalysis of Oxazolidin-2-one ring formation from carbon dioxide and prop-2-yn-1-amines under homogeneous or heterogenous conditions mirco costa. Gian Paolo Chiusoli Davide Ta ff urelli and Giulio Dalmonego 1, 1541–1546 (1998)Google Scholar
  13. Didas, S.A., Kulkarni, A.R., Sholl, D.S., Jones, C.W.: Role of amine structure on carbon dioxide adsorption from ultradilute gas streams such as ambient air. Chemsuschem 5, 2058–2064 (2012).  https://doi.org/10.1002/cssc.201200196 CrossRefPubMedGoogle Scholar
  14. Didas, S.A., Sakwa-Novak, M.A., Foo, G.S., Sievers, C., Jones, C.W.: Effect of amine surface coverage on the co-adsorption of CO2 and water: spectral deconvolution of adsorbed species. J. Phys. Chem. Lett. 5, 4194–4200 (2014).  https://doi.org/10.1021/jz502032c CrossRefPubMedGoogle Scholar
  15. Donaldson, T.L., Nguyen, Y.N.: Carbon dioxide reaction kinetics and transport in aqueous amine membranes. Ind. Eng. Chem. Fundam. 19, 260–266 (1980).  https://doi.org/10.1021/i160075a005 CrossRefGoogle Scholar
  16. Drage, T.C., Arenillas, A., Smith, K.M., Snape, C.E.: Thermal stability of polyethylenimine based carbon dioxide adsorbents and its influence on selection of regeneration strategies. Microporous Mesoporous Mater. 116, 504–512 (2008).  https://doi.org/10.1016/j.micromeso.2008.05.009 CrossRefGoogle Scholar
  17. Drage, T.C., Blackman, J.M., Pevida, C., Snape, C.E.: Evaluation of activated carbon adsorbents for CO2 capture in gasification. Energy Fuels 23, 2790–2796 (2009).  https://doi.org/10.1021/ef8010614 CrossRefGoogle Scholar
  18. Drese, J.H., Choi, S., Lively, R.P., Koros, W.J., Fauth, D.J., Gray, M.L., Jones, C.W.: Synthesis-structure-property relationships for hyperbranched aminosilica CO2 adsorbents. Adv. Funct. Mater. 19, 3821–3832 (2009).  https://doi.org/10.1002/adfm.200901461 CrossRefGoogle Scholar
  19. Foo, G.S., Lee, J.J., Chen, C.H., Hayes, S.E., Sievers, C., Jones, C.W.: Elucidation of surface species through in situ FTIR spectroscopy of carbon dioxide adsorption on amine-grafted SBA-15. Chemsuschem 10, 266–276 (2017).  https://doi.org/10.1002/cssc.201600809 CrossRefPubMedGoogle Scholar
  20. Furukawa, H., Ko, N., Bok Go, Y., Aratani, N., Beom Choi, S., Choi, E., Ozgur Yazaydin, A., Snurr, R., O’Keeffe, M., Kim, J., Yaghi, O., Go, Y., Aratani, N., Choi, S., Choi, E., Yazaydin, A., Snurr, R., O’Keeffe, M., Kim, J., Yaghi, O.: Ultrahigh porosity in metal-organic frameworks. Science 80(329), 424–428 (2010).  https://doi.org/10.1126/science.1189667 CrossRefGoogle Scholar
  21. Heldebrant, D.J., Koech, P.K., Ang, M.T.C., Liang, C., Rainbolt, J.E., Yonker, C.R., Jessop, P.G.: Reversible zwitterionic liquids, the reaction of alkanol guanidines, alkanol amidines, and diamines with CO2. Green Chem. 12, 713 (2010).  https://doi.org/10.1039/b924790d CrossRefGoogle Scholar
  22. Heydari-Gorji, A., Sayari, A.: Thermal, oxidative, and CO2-induced degradation of supported polyethylenimine adsorbents. Ind. Eng. Chem. Res. 51, 6887–6894 (2012).  https://doi.org/10.1021/ie3003446 CrossRefGoogle Scholar
  23. Hofmann, D.J., Butler, J.H., Tans, P.P.: A new look at atmospheric carbon dioxide. Atmos. Environ. 43, 2084–2086 (2009).  https://doi.org/10.1016/j.atmosenv.2008.12.028 CrossRefGoogle Scholar
  24. Kortunov, P.V., Siskin, M., Baugh, L.S., Calabro, D.C.: In situ nuclear magnetic resonance mechanistic studies of carbon dioxide reactions with liquid amines in non-aqueous systems: evidence for the formation of carbamic acids and zwitterionic species. Energy Species (2015).  https://doi.org/10.1021/acs.energyfuels.5b00985 CrossRefGoogle Scholar
  25. Kwon, H.T., Sakwa-novak, M.A., Pang, S.H., Sujan, A.R., Ping, E.W., Jones, C.W., Ping, W., Jones, C.W., Drive, F., States, U.: Aminopolymer-impregnated hierarchical silica structures: unexpected equivalent CO2 uptake under simulated air capture and flue gas capture conditions. Chem. Mater. 31(14), 5229–5237 (2019).  https://doi.org/10.1021/acs.chemmater.9b01474 CrossRefGoogle Scholar
  26. Lee, J.J., Yoo, C.J., Chen, C.H., Hayes, S.E., Sievers, C., Jones, C.W.: Silica-supported sterically hindered amines for CO2 capture. Langmuir 34, 12279–12292 (2018).  https://doi.org/10.1021/acs.langmuir.8b02472 CrossRefPubMedGoogle Scholar
  27. Levan, M.D., Jakubczak, P., Lanuza, M., Galloway, D.B., Low, J.J., Willis, R.R.: Screening of metal-organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach. J. Am. Chem. Soc. 131, 18198–18199 (2009)CrossRefGoogle Scholar
  28. Li, K., Jiang, J., Yan, F., Tian, S., Chen, X.: The influence of polyethyleneimine type and molecular weight on the CO2 capture performance of PEI-nano silica adsorbents. Appl. Energy 136, 750–755 (2014).  https://doi.org/10.1016/j.apenergy.2014.09.057 CrossRefGoogle Scholar
  29. Maggi, R., Bertolotti, C., Orlandini, E., Oro, C., Sartori, G., Selva, M.: Synthesis of oxazolidinones in supercritical CO2 under heterogeneous catalysis. Tetrahedron Lett. 48, 2131–2134 (2007).  https://doi.org/10.1016/j.tetlet.2007.01.116 CrossRefGoogle Scholar
  30. Pang, S.H., Lee, L.C., Sakwa-Novak, M.A., Lively, R.P., Jones, C.W.: Design of aminopolymer structure to enhance performance and stability of CO2 sorbents: poly(propylenimine) vs poly(ethylenimine). J. Am. Chem. Soc. 139, 3627–3630 (2017).  https://doi.org/10.1021/jacs.7b00235 CrossRefPubMedGoogle Scholar
  31. Pereira, F.S., deAzevedo, E.R., da Silva, E.F., Bonagamba, T.J., da Silva Agostíni, D.L., Magalhães, A., Job, A.E., Pérez González, E.R.: Study of the carbon dioxide chemical fixation-activation by guanidines. Tetrahedron 64, 10097–10106 (2008).  https://doi.org/10.1016/j.tet.2008.08.008 CrossRefGoogle Scholar
  32. Phan, L., Chiu, D., Heldebrant, D.J., Huttenhower, H., John, E., Li, X., Pollet, P., Wang, R., Eckert, C.A., Liotta, C.L., Jessop, P.G.: Switchable solvents consisting of amidine/alcohol or guanidine/alcohol mixtures. Ind. Eng. Chem. Res. 47, 539–545 (2008).  https://doi.org/10.1021/ie070552r CrossRefGoogle Scholar
  33. Potter, M.E., Pang, S.H., Jones, C.W.: Adsorption microcalorimetry of CO2 in confined aminopolymers. Langmuir 33(1), 117–124 (2017).  https://doi.org/10.1021/acs.langmuir.6b03793 CrossRefPubMedGoogle Scholar
  34. Qi, G., Wang, Y., Estevez, L., Duan, X., Anako, N., Park, A.-H.A., Li, W., Jones, C.W., Giannelis, E.P.: High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules. Energy Environ. Sci. 4, 444–452 (2011).  https://doi.org/10.1039/C0EE00213E CrossRefGoogle Scholar
  35. Rochelle, G.T.: Amine scrubbing for CO2 capture. Science 80(325), 1652–1654 (2009).  https://doi.org/10.2139/ssrn.2379600 CrossRefGoogle Scholar
  36. Samanta, A., Zhao, A., Shimizu, G.K.H., Sarkar, P., Gupta, R.: Post-combustion CO2 capture using solid sorbents: a review. Ind. Eng. Chem. Res. 51, 1438–1463 (2012).  https://doi.org/10.1021/ie200686q CrossRefGoogle Scholar
  37. Sanz-Pérez, E.S., Murdock, C.R., Didas, S.A., Jones, C.W.: Direct capture of CO2 from ambient air. Chem. Rev. 116, 11840–11876 (2016).  https://doi.org/10.1021/acs.chemrev.6b00173 CrossRefPubMedGoogle Scholar
  38. Sanz-Pérez, E.S., Olivares-Marín, M., Arencibia, A., Sanz, R., Calleja, G., Maroto-Valer, M.M.: CO2 adsorption performance of amino-functionalized SBA-15 under post-combustion conditions. Int. J. Greenh. Gas Control. 17, 366–375 (2013).  https://doi.org/10.1016/j.ijggc.2013.05.011 CrossRefGoogle Scholar
  39. Sanz, R., Calleja, G., Arencibia, A., Sanz-Pérez, E.S.: CO2 adsorption on branched polyethyleneimine-impregnated mesoporous silica SBA-15. Appl. Surf. Sci. 256, 5323–5328 (2010).  https://doi.org/10.1016/j.apsusc.2009.12.070 CrossRefGoogle Scholar
  40. Sarazen, M.L., Jones, C.W.: Insights into azetidine polymerization for the preparation of poly(propylenimine)-based CO2 adsorbents. Macromolecules 50, 9135–9143 (2017).  https://doi.org/10.1021/acs.macromol.7b02402 CrossRefGoogle Scholar
  41. Sayari, A., Belmabkhout, Y.: Stabilization of amine-containing CO 2 adsorbents: dramatic effect of water vapor. J. Am. Chem. Soc. 132, 6312–6314 (2010).  https://doi.org/10.1021/ja1013773 CrossRefGoogle Scholar
  42. Shi, L., Liang, L., Wang, F., Ma, J., Sun, J.: Polycondensation of guanidine hydrochloride into a graphitic carbon nitride semiconductor with a large surface area as a visible light photocatalyst. Catal. Sci. Technol. 4, 3235–3243 (2014).  https://doi.org/10.1039/c4cy00411f CrossRefGoogle Scholar
  43. Siriwardane, R.V., Shen, M.-S., Fisher, E.P., Poston, J.A.: Adsorption of CO 2 on molecular sieves and activated carbon. Energy Fuels 15, 279–284 (2001).  https://doi.org/10.1021/ef000241s CrossRefGoogle Scholar
  44. Solomon, S., Qin, D., Manning, M., Marquis, M., Averyt, K., Tignor, M., Miller, H.: Climate Change 2007: the Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ Press, Cambridge (2007)Google Scholar
  45. Son, W.J., Choi, J.S., Ahn, W.S.: Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials. Microporous Mesoporous Mater. 113, 31–40 (2008).  https://doi.org/10.1016/j.micromeso.2007.10.049 CrossRefGoogle Scholar
  46. Vaidya, P.D., Kenig, E.Y.: CO2-alkanolamine reaction kinetics: a review of recent studies. Chem. Eng. Technol. 30, 1467–1474 (2007).  https://doi.org/10.1002/ceat.200700268 CrossRefGoogle Scholar
  47. Von Harpe, A., Petersen, H., Li, Y., Kissel, T.: Characterization of commercially available and synthesized polyethylenimines for gene delivery. J. Control. Release 69, 309–322 (2000).  https://doi.org/10.1016/S0168-3659(00)00317-5 CrossRefGoogle Scholar
  48. Wei, D., Guan, Y., Ma, Q., Zhang, X., Teng, Z., Jiang, H., Zheng, A.: Condensation between guanidine hydrochloride and diamine/multi-amine and its influence on the structures and antibacterial activity of oligoguanidines. e-Polymer (2012).  https://doi.org/10.1515/epoly.2012.12.1.848 CrossRefGoogle Scholar
  49. Wei, D., Ma, Q., Guan, Y., Hu, F., Zheng, A., Zhang, X., Teng, Z., Jiang, H.: Structural characterization and antibacterial activity of oligoguanidine (polyhexamethylene guanidine hydrochloride). Mater. Sci. Eng. C 29, 1776–1780 (2009).  https://doi.org/10.1016/j.msec.2009.02.005 CrossRefGoogle Scholar
  50. Xie, H., Duan, H., Li, S., Zhang, S.: The effective synthesis of propylene carbonate catalyzed by silica-supported hexaalkylguanidinium chloride. New J. Chem. 29, 1199–1203 (2005).  https://doi.org/10.1039/b504822b CrossRefGoogle Scholar
  51. Xu, X., Song, C., Andresen, J.M., Miller, B.G., Scaroni, A.W.: Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture. Energy Fuels 16, 1463–1469 (2002).  https://doi.org/10.1021/ef020058u CrossRefGoogle Scholar
  52. Xu, X., Song, C., Andrésen, J.M., Miller, B.G., Scaroni, A.W.: Preparation and characterization of novel CO2” Molecular Basket” adsorbents based on polymer-modified mesoporous molecular sieve MCM-41. Microporous Mesoporous Mater. 62, 29–45 (2003).  https://doi.org/10.1016/S1387-1811(03)00388-3 CrossRefGoogle Scholar
  53. Xu, X., Song, C., Miller, B.G., Scaroni, A.W.: Influence of moisture on CO2 separation from gas mixture by a nanoporous adsorbent based on polyethylenimine-modified molecular sieve MCM-41. Ind. Eng. Chem. Res. 44, 8113–8119 (2005).  https://doi.org/10.1021/ie050382n CrossRefGoogle Scholar
  54. Yan, X., Zhang, L., Zhang, Y., Qiao, K., Yan, Z., Komarneni, S.: Amine-modified mesocellular silica foams for CO2 capture. Chem. Eng. J. 168, 918–924 (2011).  https://doi.org/10.1016/j.cej.2011.01.066 CrossRefGoogle Scholar
  55. Yang, H., Xu, Z., Fan, M., Gupta, R., Slimane, R.B., Bland, A.E., Wright, I.: Progress in carbon dioxide separation and capture: a review. J. Environ. Sci. 20, 14–27 (2008).  https://doi.org/10.1016/S1001-0742(08)60002-9 CrossRefGoogle Scholar
  56. Yu, C.H., Huang, C.H., Tan, C.S.: A review of CO2 capture by absorption and adsorption. Aerosol Air Qual. Res. 12, 745–769 (2012).  https://doi.org/10.4209/aaqr.2012.05.0132 CrossRefGoogle Scholar
  57. Zhang, S., He, L.N.: Capture and fixation of CO2 promoted by guanidine derivatives. Aust. J. Chem. 67, 980–988 (2014).  https://doi.org/10.1071/CH14125 CrossRefGoogle Scholar
  58. Zhang, Y., Jiang, J., Chen, Y.: Synthesis and antimicrobial activity of polymeric guanidine and biguanidine salts. Polymer 40, 6189–6198 (1999).  https://doi.org/10.1016/S0032-3861(98)00828-3 CrossRefGoogle Scholar
  59. Zhou, S., Chen, X., Nguyen, T., Voice, A.K., Rochelle, G.T.: Aqueous ethylenediamine for CO2 capture. Chemsuschem 3, 913–918 (2010).  https://doi.org/10.1002/cssc.200900293 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemical & Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations