Advertisement

Transport properties of Ag decorated zigzag graphene nanoribbons as a function of temperature: a density functional based tight binding molecular dynamics study

  • 61 Accesses

  • 1 Citations

Abstract

The systemic study of the electronic transport (ET) properties of transition metal (TM) functionalized graphene was done with the aid of self-consistent charge density functional based tight binding (DFTB) method. Results show that among the TM considered, Silver metal adsorbed in the surface of graphene and its lower dimensional analogue zigzag graphene nanoribbon (ZGNR) can open its gapless bandstructure. This can be attributed to the breaking of bond and inversion symmetry. Further, the inherent effect of phonons (lattice vibrations) on the transport properties Ag-adsorbed ZGNR were investigated based on DFTB molecular dynamics (MD) simulation. Results show that excellent ET properties can be attributed to the Ag and ZGNR interaction. In addition, due to the unceasing lattice vibration of the Ag/ZGNR, the ET changes. Knowledge about the quantum of vibration at temperature T is quite important to elucidate its role governing the resulting ET. As the phonon having shorter wave length significantly increases at elevated temperatures, the corresponding forward bias voltage across the Ag/ZGNR increases. There is an increase in the conductance of vibrating Ag/ZGNR at elevated temperatures. A single-gated field effect transistor based on Ag-adsorbed ZGNR can act as a potential semiconductor for modern electronic applications.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3

References

  1. Bera, C., et al.: Thermoelectric properties of nanostructured Si(1 − x)Ge(x) and potential for further improvement. J. Appl. Phys. 108, 124306 (2010)

  2. Cai, J., Ruffieux, P., Jaafar, R., Bieri, M., Braun, T., Blankenburg, S., Muoth, M., Seitsonen, A.P., Saleh, M., Feng, X., Muellen, K., Fasel, R.: Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010)

  3. Castro Neto, A.H., Guinea, F., Peres, N.M.R.: Drawing conclusions from graphene. Phys. World 19, 33–37 (2006)

  4. Chung, D.Y., et al.: Edge-exposed MoS2 nano-assembled structures as efficient electrocatalysts for hydrogen evolution reaction. Nanoscale 6(4), 2131–2136 (2014)

  5. Chuvilin, A., Bichoutskaia, E., Gimenez-Lopez, M.C., Chamberlain, T.W., Rance, G.A.: Self-assembly of a sulphur-terminated graphene nanoribbon within a single-walled carbon nanotube. Nat. Mater. 10, 687–692 (2011)

  6. D’Agosta, R.: Towards a dynamical approach to the calculation of the figure of merit of thermoelectric nanoscale devices. Phys. Chem. Chem. Phys. 15, 1758–1765 (2013). https://doi.org/10.1039/c2cp42594g

  7. Datta, A.: Structures and electronic properties of silicene clusters: a promising material for FET and hydrogen storage. Phys. Chem. Chem. Phys. 13, 7304–7311 (2011)

  8. Di Carlo, A., Gheorghe, M., Lugli, P., Stenberg, M., Seifert, G., Frauenheim, Th: Theoretical tools for transport in molecular nanostructures. Phys. B 314, 86 (2002)

  9. Elstner, M., Porezag, D., Jungnickel, G., Elsner, J., Haugk, M., Frauenheim, T., Suhai, S., Seifert, G.: Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B 58, 7260 (1998)

  10. Fujita, M., Wakabayashi, K., Nakada, K., Kusakabe, K.J.J.: Peculiar localized state at zigzag graphite edge. Phys. Soc. Jpn. 65, 1920–1923 (1996)

  11. Gasparian, V., Christen, T., Buttiker, M.: Partial densities of states, scattering matrices, and green’s functions. Phys. Rev. A 54, 4022 (1996)

  12. Geim, A.K., Novoselov, K.S.: The rise of graphene: article. Nat. Mater. 6(3), 183–191 (2007)

  13. Grimme, S., Antony, J., Ehrlich, S., Krieg, H.: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010)

  14. Groot, R.A., Mueller, F.M., Engen, P.G., Buschow, K.H.J.: New class of materials: half-metallic ferromagnets. Phys. Rev. Lett. 50, 2024 (1983)

  15. He, K., Lee, G., Robertson, A.E., Yoon, E., Warner, J.H.: Hydrogen-free graphene edges. Nat. Commun. 5, 3040 (2014)

  16. Hod, O., Barone, V., Scuseria, G.E.: Exact treatment of dissociations to non-degenerate orbitals. Phys. Rev. B 77, 035411 (2008)

  17. Hoonkyung, L., Jisoon, I., Cohen, M.L., Louie, S.G.: Calcium-decorated graphene-based nanostructures for hydrogen storage. Nano Lett. 10(3), 793–798 (2010)

  18. Jung, J., Pereg-Barnea, T., MacDonald, A.H.: Theory of inter edge super exchange in zigzag edge magnetism. Phys. Rev. Lett. 102(22), 227205 (2009)

  19. Kan, E.J., Li, Z., Yang, J.L., Hou, J.G.: Will zigzag graphene nanoribbon turn to half metal under electric field. App. Phys. Lett. 91, 243116 (2007)

  20. Katsnelson, M.L., Novoselov, K.S., Geim, A.K.: Chiral tunneling and the Klein paradox in graphene. Nat. Phys. 2, 620–625 (2006)

  21. Lebon, A., Carrete, J., Longo, R.C., Vega, A., Gallego, L.J.: Molecular hydrogen uptake by zigzag graphene nanoribbons doped with early 3d transition-metal atoms. Int J Hydrog Energy 38(21), 8872–8880 (2013)

  22. Lee, H., Son, Y.W., Park, N., Han, S., Yu, J.: Magnetic ordering at the edges of graphitic fragments: magnetic tail interactions between the edge-localized states. Phys. Rev. B 72, 174431 (2005)

  23. Lewenkopf, C.H., Mucciolo, E.R.: The recursive Green’s function method for graphene. J. Comput. Electron. 12, 203–231 (2013). https://doi.org/10.1007/s10825-013-0458-7

  24. Mananghaya, M.: Carbon nanotubes doped with nitrogen, pyridine-like nitrogen defects, and transition metal atoms. J. Korean Chem. Soc. 56(1), 34–46 (2012)

  25. Mananghaya, M.: Understanding the structure and electronic properties of N-doped graphene nanoribbons upon hydrogen saturation. J. Chem. Sci. 126(6), 1737–1742 (2014a)

  26. Mananghaya, M.: Theoretical investigation of edge-modified zigzag graphene nanoribbons by scandium metal with pyridine-like defects: a potential hydrogen storage material. Bull. Korean Chem. Soc. 35(1), 253–256 (2014b)

  27. Mananghaya, M.: Stability and electronic properties of the adsorption of molecular hydrogen on metal-containing single-walled carbon nanotubes. J. Korean Chem. Soc. 59, 429–433 (2015a)

  28. Mananghaya, M.: Hydrogen adsorption of nitrogen-doped carbon nanotubes functionalized with 3d-block transition metals. J. Chem. Sci. 127(4), 751–759 (2015b)

  29. Mananghaya, M.: Modeling of single-walled carbon nanotubes functionalized with carboxylic and amide groups towards its solubilization in water. J. Mol. Liq. 212, 592–596 (2015c)

  30. Mananghaya, M.: Hydrogen adsorption of novel N-doped carbon nanotubes functionalized with scandium. Int. J. Hydrog. Energy 40(30), 9352–9358 (2015d)

  31. Mananghaya, M.R.: Hydrogen saturation limit of Ti-doped BN nanotube with BN defects: an insight from DFT calculations. Int. J. Hydrog. Energy 43(22), 10368–10375 (2018)

  32. Mananghaya, M.R.: Titanium-decorated boron nitride nanotube for hydrogen storage: a multiscale theoretical investigation. Nanoscale (2019). https://doi.org/10.1039/C9NR04578C

  33. Mananghaya, M., Belo, L.P.: A Beltran Adsorption of hydrogen in Scandium/Titanium decorated nitrogen doped carbon nanotube 180(1), 357–363 (2016)

  34. Mananghaya, M., Rodulfo, E., Santos, G.N., Villagracia, A.R.: Theoretical investigation on the solubilization in water of functionalized single-wall carbon nanotubes. J. Nanotechnol. 2012, 780815 (2012a)

  35. Mananghaya, M., Rodulfo, E., Santos, G.N., Villagracia, A.R.: Theoretical investigation on single-wall carbon nanotubes doped with nitrogen, pyridine-like nitrogen defects, and transition metal atoms. J. Nanomater. 2012, 104891 (2012b)

  36. Mananghaya, M., Yu, D., Santos, G.N., Rodulfo, E.: Scandium and titanium containing single-walled carbon nanotubes for hydrogen storage: a thermodynamic and first principle calculation. Sci. Rep. 6, 27370 (2016a)

  37. Mananghaya, M., Yu, D., Santos, G.N.: Hydrogen adsorption on boron nitride nanotubes functionalized with transition metals. Int. J. hydrog. Energy 41(31), 13531–13539 (2016b)

  38. Mananghaya, M., Promentilla, M.A., Aviso, K., Tan, R.: Theoretical investigation of the solubilization of COOH-functionalized single wall carbon nanotubes in water. J. Mol. Liq. 215, 780–786 (2016c)

  39. Mananghaya, M., Yu, D., Santos, G.N., Rodulfo, E.: Adsorption of mercury(II) chloride and carbon dioxide on graphene/calcium oxide (0 0 1). Korean J. Mater. Res. 26(6), 298–305 (2016d)

  40. Mananghaya, M., Santos, G.N., Yu, D.: Solubility of amide functionalized single wall carbon nanotubes: a quantum mechanical study. J. Mol. Liq. 242, 1208–1214 (2017a)

  41. Mananghaya, M.R., Santos, G.N., Yu, D.: Nitrogen substitution and vacancy mediated scandium metal adsorption on carbon nanotubes. Adsorption 23(6), 789–797 (2017b)

  42. Mananghaya, M.R., Santos, G.N., Yu, D., Stampfl, C.: Hydrogen adsorption on nearly zigzag-edged nanoribbons: a density functional theory study. Sci. Rep. 7(1), 15727 (2017c)

  43. Mananghaya, M.R., Santos, G.N., Yu, D.: Hydrogen adsorption of boron nitride nanotube: a density functional based tight binding molecular dynamics study. Adsorption 24(7), 683–690 (2018)

  44. Mananghaya, M.R., Santos, G.N., Yu, D.: Solubility of aminotriethylene glycol functionalized single wall carbon nanotubes: a density functional based tight binding molecular dynamics study. J. Comput. Chem. 40(8), 952–958 (2019)

  45. Maruyama, K.K.: Magnetic nanographite. Mat. Phys. Rev. B 67, 092406 (2003)

  46. Miyamoto, Y., Nakada, K., Fujita, M.: First-principles study of edge states of H-terminated graphitic ribbons. Phy. Rev. B60, 16211 (1999)

  47. Nakada, K., Fujita, M., Dresselhaus, G., Dresselhaus, M.S.: Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phy. Rev. B 54, 17954–17961 (1996)

  48. Novoselov, K.S., et al.: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

  49. Novoselov, K.S., et al.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005)

  50. Novoselov, K.S., et al.: Room-temperature quantum hall effect in graphene. Science 315, 1379 (2007)

  51. Pecchia, A., Di Carlo, A.: Atomistic theory of transport in organic and inorganic nanostructures. Rep. Prog. Phys. 67, 1497 (2004)

  52. Pecchia, A., Di Carlo, A., Gagliardi, A., Sanna, S., Fraunheim, Th, Gutierrez, R.: Incoherent electron-phonon scattering in octanethiols. Nano Lett. 4, 2109 (2004)

  53. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

  54. Pisani, L., Chan, J.A., Harrison, B.M.: Electronic structure and magnetic properties of graphitic ribbons. Nano Mat. Phys. Rev. B 75, 064418 (2007)

  55. Reich, S., Maultzsch, J., Thomsen, C., Ordejón, P.: Tight-binding description of graphene. Phys. Rev. B 66, 1–5 (2002). https://doi.org/10.1103/PhysRevB.66.035412

  56. Rigo, V.A., Martins, T.B., Antonio, J.R., da Silva, A.J., et al.: Electronic, structural, and transport properties of Ni-doped graphene nanoribbons. Phys. Rev. B 79, 75435 (2009)

  57. Robertson, A.W., et al.: Spatial control of defect creation in graphene at the nanoscale. Nat. Commun. 3, 1144 (2012). https://doi.org/10.1038/ncomms2141

  58. Rodriguez-Manzo, J.A., Banhart, F.: Creation of individual vacancies in carbon nanotubes by using an electron beam. Nano Lett. 9, 2285–2289 (2009). https://doi.org/10.1021/nl900463u

  59. Rudberg, E., Salek, P., Luo, Y.: Nonlocal exchange interaction removes half-metallicity in graphene nanoribbons. Nano Lett. 7, 2211–2213 (2007)

  60. Schmidt, M.W., et al.: General atomic and molecular electronic structure system. J. Comput. Chem. 14, 1347–1363 (2004)

  61. Soldano, G.J., Juarez, M.F., Teo, B.W.T., Santos, E.: Structure and stability of graphene edges in O2 and H2 environments from ab initio thermodynamics. Carbon 78, 181–189 (2014)

  62. Son, Y.W., Cohen, M.L., Louie, S.G.: Half-metallic graphene nanoribbons. Nature 444, 347–349 (2006)

  63. Warner, J.H., et al.: Atomic scale growth dynamics of nanocrystals within carbon nanotubes. ACS Nano 5, 1410–1417 (2011)

  64. Wirtz, L., Rubio, A.: The phonon dispersion of graphite revisited. Solid State Commun. 131, 141–152 (2004). https://doi.org/10.1016/j.ssc.2004.04.042

  65. Yang, S.J., Cho, J.H., Oh, G.H., Nahm, K.S., Park, C.R.: Easy synthesis of highly nitrogen-enriched graphitic carbon with a high hydrogen storage capacity at room temperature. Carbon 47, 1585–1591 (2009)

  66. Yuan, W., Wen, Z., Li, M., Chen, L., Chen, G., Ruan, D., Gao, Y.: Energy gap of novel edge-defected graphene nanoribbons. Jpn. J. Appl. Phys. 55, 085101 (2016)

  67. Zhou, S.Y., et al.: First direct observation of Dirac fermions in graphite. Nat. Phys. 2, 595–599 (2006)

  68. Ziese, M.: Extrinsic magnetotransport phenomena in ferromagnetic oxides. Rep. Prog. Phys. 65, 143–249 (2002)

Download references

Author information

Correspondence to Michael Mananghaya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 2 (MP4 6192 kb)

Supplementary material 1 (DOC 666 kb)

Supplementary material 2 (MP4 6192 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mananghaya, M. Transport properties of Ag decorated zigzag graphene nanoribbons as a function of temperature: a density functional based tight binding molecular dynamics study. Adsorption 25, 1655–1662 (2019) doi:10.1007/s10450-019-00166-7

Download citation

Keywords

  • Binding energy
  • Density functional theory tight binding
  • Graphene nanoribbon
  • Transition metals