, Volume 26, Issue 2, pp 241–250 | Cite as

Exfoliation and europium(III)-functionalization of α-titanium phosphate via propylamine intercalation: from multilayer assemblies to single nanosheets

  • Jorge García-Glez
  • Camino Trobajo
  • Alaa Adawy
  • Zakariae AmghouzEmail author


Layered α-titanium phosphate intercalated with propylamine, Ti(HPO4)2·2C3H7NH2·H2O (α-TiPPr), has been synthesized by solid-vapour reaction and then exfoliated via a single-stage approach based on overnight stirring in aqueous medium. The obtained nanosheets were then functionalized using solid–liquid reaction with europium(III) nitrate aqueous solutions. The obtained materials were characterized by powder X-ray diffraction (PXRD), N2 adsorption–desorption isotherms at 77 K, scanning electron microscopy (SEM), transmission electron microscopy (TEM, SAED, STEM-EDX), atomic force microscopy (AFM) and photoluminescence spectroscopy (PL). The europium(III) sorption takes place via two distinct pathways, the first is the previously reported C3H7NH3+/[Eu(H2O)6]3+ ion-exchange process into the titanium–phosphate interlayer space of the multilayered α-TiPPr. The second pathway is the self-assembly of single-sheets which is provoked by electrostatic interactions between the negatively charged titanium–phosphate sheets and the Eu(III)-aqueous cations, leading to the formation of layered nanoparticles.


Titanium phosphate Propylamine Exfoliation Europium Luminescence 



Financial support from Spanish Ministerio de Economía y Competitividad (MAT2013-40950-R and MAT2016-78155-C2-1-R) and Gobierno del Principado de Asturias (GRUPIN14-060), and FEDER funding are acknowledged. The authors acknowledge the help of the technical scientist, in particular, Beatriz Ramajo Escalera, at the Scientific and Technical Services, University of Oviedo, Spain.

Supplementary material

10450_2019_133_MOESM1_ESM.pdf (1.3 mb)
Supplementary material 1 (PDF 1376 kb)


  1. Abdelbaky, M.S.M., Amghouz, Z., García-Granda, S., García, J.R.: Synthesis, structures and luminescence properties of metal-organic frameworks based on lithium–lanthanide and terephthalate. Polymers 8, 86 (2016)PubMedCentralGoogle Scholar
  2. Alberti, G., Cavalaglio, S., Dionigi, C., Marmottini, F.: Formation of aqueous colloidal dispersions of exfoliated γ-zirconium phosphate by intercalation of short alkylamines. Langmuir 16, 7663–7668 (2000)Google Scholar
  3. Amghouz, Z., García-Granda, S., García, J.R., Clearfield, A., Valiente, R.: Organic-inorganic hybrids assembled from lanthanide and 1,4-phenylenebis (phosphonate). Cryst. Growth Des. 11, 5289–5297 (2011)Google Scholar
  4. Amghouz, Z., García-Granda, S., García, J.R., Ferreira, R.A.S., Mafra, L., Carlos, L.D., Rocha, J.: Series of metal organic frameworks assembled from Ln(III), Na(I), and chiral flexible-achiral rigid dicarboxylates exhibiting tunable UV–vis–IR light emission. Inorg. Chem. 51, 1703–1716 (2012)PubMedGoogle Scholar
  5. Atuchin, V.V., Aleksandrovsky, A.S., Chimitova, O.D., Gavrilova, T.A., Krylov, A.S., Molokeev, M.S., Oreshonkov, A.S., Bazarov, B.G., Bazarova, J.G.: Synthesis and spectroscopic properties of monoclinic α-Eu2(MoO4)3. J. Phys. Chem. C 118, 15404–15411 (2014)Google Scholar
  6. Binnemans, K.: Interpretation of europium(III) spectra. Coord. Chem. Rev. 295, 1–45 (2015)Google Scholar
  7. Brunet, E.: Usual molecules in unusual environments displaying unusual properties. Aust. J. Chem. 63, 1679–1685 (2010)Google Scholar
  8. Chaudhari, A., Kumar, C.V.: Intercalation of proteins into α-zirconium phosphonates: tuning the binding affinities with phosphonate functions. Micropor. Mesopor. Mater. 77, 175–187 (2005)Google Scholar
  9. Clearfield, A., Stynes, J.A.: The preparation of crystalline zirconium phosphate and some observations on its ion exchange behavior. J. Inorg. Nucl. Chem. 26, 117–129 (1964)Google Scholar
  10. Clearfield, A., Blessing, R.H., Stynes, J.A.: New crystalline phases of zirconium phosphate possessing ion-exchange properties. J. Inorg. Nucl. Chem. 14, 2249–2258 (1968)Google Scholar
  11. Coleman, J.N., Lotya, M., O’Neill, A., Bergin, S.D., King, P.J., Khan, U., Young, K., Gaucher, A., De, S., Smith, R.J., Shvets, I.V., Arora, S.K., Stanton, G., Kim, H.Y., Lee, K., Kim, G.T., Duesberg, G.S., Hallam, T., Boland, J.J., Wang, J.J., Donegan, J.F., Grunlan, J.C., Moriarty, G., Shmeliov, A., Nicholls, R.J., Perkins, J.M., Grieveson, E.M., Theuwissen, K., McComb, D.W., Nellist, P.D., Nicolosi, V.: Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011)PubMedGoogle Scholar
  12. Espina, A., García, J.R., Guil, J.M., Jaimez, E., Parra, J.B., Rodríguez, J.: Calorimetric study of amine adsorption on α- and γ-titanium phosphate. J. Phys. Chem. B 102, 1713–1716 (1998a)Google Scholar
  13. Espina, A., Jaimez, E., Khainakov, S.A., Trobajo, C., García, J.R., Rodríguez, J.: Synthesis of new n-alkyldiamines intercalation compounds into α-titanium phosphate. Process selectivity and structural and morphological characterization. Chem. Mater. 10, 2490–2496 (1998b)Google Scholar
  14. Espina, A., Trobajo, C., Khainakov, S.A., García, J.R., Bortun, A.I.: Intercalation of n-alkylamines into layered materials: a method for the recognition of isomorphism in semicrystalline compounds. J. Chem. Soc. Dalton Trans. (2001). CrossRefGoogle Scholar
  15. Ferreira, R.A.S., Nobre, S.S., Granadeiro, C.M., Nogueira, H.I.S., Carlos, L.D., Malta, O.L.: A theoretical interpretation of the abnormal 5D07F4 intensity based on the Eu3+ local coordination in the Na9[EuW10O36]·14H2O polyoxometalate. J. Lumin. 121, 561–567 (2006)Google Scholar
  16. García-Glez, J., Trobajo, C., Khainakov, S.A., Amghouz, Z.: α-Titanium phosphate intercalated with propylamine: an alternative pathway for efficient europium(III) uptake into layered tetravalent metal phosphates. Arab. J. Chem. 10, 885–894 (2016)Google Scholar
  17. García-Granda, S., Khainakov, S.A., Espina, A., García, J.R., Castro, G.R., Rocha, J., Mafra, L.: Revisiting the thermal decomposition of layered γ-titanium phosphate and structural elucidation of its intermediate phases. Inorg. Chem. 49, 2630–2638 (2010)PubMedGoogle Scholar
  18. Jeffery, A.A., Pradeep, A., Rajamathi, M.: Preparation of titanate nanosheets and nanoribbons by exfoliation of amine intercalated titanates. Phys. Chem. Chem. Phys. 18, 12604–12609 (2016)PubMedGoogle Scholar
  19. Ji, H., Huang, Z., Xia, Z., Molokeev, M.S., Jiang, X., Lin, Z., Atuchin, V.V.: Comparative investigations of the crystal structure and photoluminescence property of eulytite-type Ba3Eu(PO4)3 and Sr3Eu(PO4)3. Dalton Trans. 44, 7679–7686 (2015)PubMedGoogle Scholar
  20. Kim, H.N., Keller, S.W., Mallouk, T.E., Schmitt, J., Decher, G.: Characterization of zirconium phosphate/polycation thin films grown by sequential adsorption reactions. Chem. Mater. 9, 1414–1421 (1997)Google Scholar
  21. Kraus, K.A., Phillips, H.O.: Adsorption on inorganic materials. 1. Cation exchange properties of zirconium phosphate. J. Am. Chem. Soc. 78, 694 (1956)Google Scholar
  22. Kullberg, L., Clearfield, A.: Mechanism of ion-exchange in zirconium phosphates. 32. Thermodynamics of alkali-metal ion-exchange on crystalline α-ZrP. J. Phys. Chem. 85, 1585–1589 (1981)Google Scholar
  23. Kumar, C.V., Chaudhari, A.: Proteins immobilized at the galleries of layered α-zirconium phosphate: structure and activity studies. J. Am. Chem. Soc. 122, 830–837 (2000)Google Scholar
  24. Liu, Z.P., Ma, R.Z., Ebina, Y., Iyi, N., Takada, K., Sasaki, T.: General synthesis and delamination of highly crystalline transition-metal-bearing layered double hydroxides. Langmuir 23, 861–867 (2007a)PubMedGoogle Scholar
  25. Liu, Z.P., Ma, R.Z., Osada, M., Iyi, N., Ebina, Y., Takada, K., Sasaki, T.: Synthesis, anion exchange, and delamination of Co–Al layered double hydroxide: assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies. J. Am. Chem. Soc. 128, 4872–4880 (2007b)Google Scholar
  26. Mafra, L., Paz, F.A.A., Rocha, J., Espina, A., Khainakov, S.A., García, J.R., Fernández, C.: Structural characterization of layered γ-titanium phosphate (C6H13NH3)[Ti(HPO4)(PO4)]·H2O. Chem. Mater. 17, 6287–6294 (2005)Google Scholar
  27. Mafra, L., Rocha, J., Fernández, C., Castro, G.R., García-Granda, S., Espina, A., Khainakov, S.A., García, J.R.: Characterization of layered γ-titanium phosphate (C2H5NH3)[Ti(H1.5PO4)(PO4)]2·H2O intercalate: a combined NMR, synchrotron XRD, and DFT calculations study. Chem. Mater. 20, 3944–3953 (2008)Google Scholar
  28. Menéndez, F., Espina, A., Trobajo, C., Rodríguez, J.: Intercalation of n-alkylamines by lamellar materials of the α-zirconium phosphate type. Mater. Res. Bull. 25, 1531–1539 (1990)Google Scholar
  29. Menéndez, A., Bárcena, M., Jaimez, E., García, J.R., Rodríguez, J.: Intercalation of n-alkylamines by γ-titanium phosphate. Synthesis of new materials by thermal treatment of the intercalation compounds. Chem. Mater. 5, 1078–1084 (1993)Google Scholar
  30. Ninjbadgar, T., Garnweitner, G., Borger, A., Goldenberg, L.M., Sakhno, O.V., Stumpe, J.: Synthesis of luminescent ZrO2:Eu3+ nanoparticles and their holographic sub-micrometer patterning in polymer composites. Adv. Funct. Mater. 9, 1819–1825 (2009)Google Scholar
  31. O’Neill, A., Khan, U., Coleman, J.N.: Preparation of high concentration dispersions of exfoliated MoS2 with increased flake size. Chem. Mater. 24, 2414–2421 (2012)Google Scholar
  32. Ortiz-Oliveros, H.B., Flores-Espinosa, R.M., Ordóñez-Regil, E., Fernández-Valverde, S.M.: Synthesis of α-Ti(HPO4)2·H2O and sorption of Eu(III). Chem. Eng. J. 236, 398–405 (2014)Google Scholar
  33. Osada, M., Sasaki, T.: Two-dimensional dielectric nanosheets: novel nanoelectronics from nanocrystal building blocks. Adv. Mater. 24, 210–228 (2012)PubMedGoogle Scholar
  34. Oshima, T., Lu, D.L., Ishitani, O., Maeda, K.: Intercalation of highly dispersed metal nanoclusters into a layered metal oxide for photocatalytic overall water splitting. Angew. Chem. Int. Ed. 54, 2698–2702 (2015)Google Scholar
  35. Parvez, K., Wu, Z.S., Li, R., Liu, X., Graf, R., Feng, X., Mullen, K.: Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J. Am. Chem. Soc. 136, 6083–6091 (2014)PubMedGoogle Scholar
  36. Salvadó, M.A., Pertierra, P., García-Granda, S., García, J.R., Rodríguez, J., Fernandez-Diaz, M.T.: Neutron powder diffraction study of α-Ti (HPO4)2·H2O and α-Hf (HPO4)2·H2O: H-atom positions. Acta Cryst. B 52, 896–898 (1996)Google Scholar
  37. Shi, P., Xia, Z., Molokeev, M.S., Atuchin, V.V.: Crystal chemistry and luminescence properties of red-emitting CsGd1-xEux(MoO4)2 solid-solution phosphors. Dalton Trans. 43, 9669–9676 (2014)PubMedGoogle Scholar
  38. Sun, L.Y., Boo, W.J., Sun, D.Z., Clearfield, A., Sue, H.J.: Preparation of exfoliated epoxy/α-zirconium phosphate nanocomposites containing high aspect ratio nanoplatelets. Chem. Mater. 19, 1749–1754 (2007)Google Scholar
  39. Takei, T., Kobayashi, Y., Hata, H., Yonesaki, Y., Kumada, N., Kinomura, N., Mallouk, T.E.: Anodic electrodeposition of highly oriented zirconium phosphate and polyaniline-intercalated zirconium phosphate films. J. Am. Chem. Soc. 128, 16634–16640 (2006)PubMedGoogle Scholar
  40. Tanaka, H., Ishida, K., Okumiya, T., Murakami, M.: Preparation and exfoliation of layered titanium butyl phosphates. Colloid Polym. Sci. 288, 1427–1433 (2010)Google Scholar
  41. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051–1069 (2015)Google Scholar
  42. Troup, J.M., Clearfield, A.: Mechanism of ion-exchange in zirconium phosphates. 20. Refinement of crystal structure of α-zirconium phosphate. Inorg. Chem. 16, 3311–3314 (1977)Google Scholar
  43. Wang, L.Z., Ebina, Y., Takada, K., Kurashima, K., Sasaki, T.: A new mesoporous manganese oxide pillared with double layers of alumina. Adv. Mater. 16, 1412–1416 (2004)Google Scholar
  44. Wassei, J.K., Kaner, R.B.: Oh, the places you’ll go with graphene. Acc. Chem. Res. 46, 2244–2253 (2013)PubMedGoogle Scholar
  45. Xia, Z.Y., Pezzini, S., Treossi, E., Giambastiani, G., Corticelli, F., Morandi, V., Zanelli, A., Bellani, V., Palermo, V.: The exfoliation of graphene in liquids by electrochemical, chemical, and sonication-assisted techniques: a nanoscale study. Adv. Funct. Mater. 23, 4684–4693 (2013)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Organic and Inorganic ChemistryUniversity of Oviedo-CINNOviedoSpain
  2. 2.Laboratory of HRTEM, Scientific and Technical ServicesUniversity of Oviedo-CINNOviedoSpain
  3. 3.Department of Materials Science and Metallurgical EngineeringUniversity of OviedoGijónSpain

Personalised recommendations