Advertisement

Adsorption

, Volume 25, Issue 5, pp 973–982 | Cite as

Modeling elastic properties of Vycor glass saturated with liquid and solid adsorbates

  • Yongyang Sun
  • Boris Gurevich
  • Gennady Y. GorEmail author
Article
  • 67 Downloads

Abstract

A combination of ultrasonic experiments with gas adsorption is a promising tool for improved characterization of nanoporous materials. The use of ultrasound requires understanding of the effects of adsorbates on the elastic properties of nanoporous medium. This issue is not trivial, because nanostructured materials, as well as nanoconfined matter, may exhibit physical properties that differ substantially from the properties of “normal” bulk materials. In this paper, we investigate the change of elastic properties of Vycor glass filled with adsorbed liquid and solid argon within the context of elasticity and compare the modeling results with the ultrasonic measurements. The modeling requires the knowledge of solid moduli of Vycor glass and the pore geometry, which cannot be measured directly. Instead, we estimate these parameters from the dry moduli using so-called Differential Effective Medium (DEM) theory, in which the pores are assumed to be of spheroidal shape characterized by a single aspect ratio. Predictions of the Gassmann equation give an excellent fit to the measured elastic moduli of Vycor glass completely filled with liquid argon at temperature 80 K. Estimates of the DEM show a reasonable agreement with ultrasonic measurements on the elastic moduli of Vycor glass fully saturated with solid argon at 74 K in shear modulus but a significant overestimate in bulk modulus. This might be due to the effects of the confinement on the moduli of argon in nanopores. Although the validation and generalization of this conclusion requires further laboratory experiments for a number of well characterized solid–fluid systems, our finding shed light on the understanding of elastic properties of nanoporous materials mixed with adsorbates in various phases. These results provide steps toward development of methods for ultrasonic characterization of confined fluid and solid phases.

Keywords

Ultrasound Characterization Elasticity Effective medium theory Vycor 

Notes

Acknowledgements

The authors thank the sponsors of the Curtin Reservoir Geophysics Consortium and China Scholarship Council (CSC) for financial support, and Stanislav Glubokovskikh and Patrick Huber for useful discussions.

References

  1. Amberg, C., McIntosh, R.: A study of adsorption hysteresis by means of length changes of a rod of porous glass. Can. J. Chem. 30(12), 1012–1032 (1952)Google Scholar
  2. Anderson, M., Swenson, C.: Experimental equations of state for the rare gas solids. J. Phys. Chem. Solids 36(3), 145–162 (1975)Google Scholar
  3. Balzer, C., Cimino, R.T., Gor, G.Y., Neimark, A.V., Reichenauer, G.: Deformation of microporous carbons during N2, Ar, and CO2 adsorption: insight from the density functional theory. Langmuir 32(32), 8265–8274 (2016)Google Scholar
  4. Barker, J., Dobbs, E.: CXX. Measurement of the elasticity of solid argon with an ultrasonic interferometer. Lond. Edinb. Dubl. Phil. Mag. 46(381), 1069–1080 (1955)Google Scholar
  5. Bentz, D.P., Garboczi, E.J., Quenard, D.A.: Modelling drying shrinkage in reconstructed porous materials: application to porous Vycor glass. Model. Simul. Mater. Sci. Eng 6(3), 211 (1998)Google Scholar
  6. Berryman, J.G.: Long-wavelength propagation in composite elastic media II. Ellipsoidal inclusions. J. Acoust. Soc. Am. 68(6), 1820–1831 (1980)Google Scholar
  7. Berryman, J.G.: Origin of Gassmann’s equations. Geophysics 64(5), 1627–1629 (1999)Google Scholar
  8. Biot, M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low frequency range. J. Acoust. Soc. Am. 28(2), 168–178 (1956)Google Scholar
  9. Charnaya, E., Plotnikov, P., Michel, D., Tien, C., Borisov, B., Sorina, I., Martynova, E.: Acoustic studies of melting and freezing for mercury embedded into Vycor glass. Physica B 299(1–2), 56–63 (2001)Google Scholar
  10. Cleary, M.P., Lee, S.-M., Chen, I.-W.: Self-consistent techniques for heterogeneous media. J. Eng. Mech 106(5), 861–887 (1980)Google Scholar
  11. Coasne, B., Czwartos, J., Sliwinska-Bartkowiak, M., Gubbins, K.E.: Effect of pressure on the freezing of pure fluids and mixtures confined in nanopores. J. Phys. Chem. B 113(42), 13874–13881 (2009)Google Scholar
  12. Dobrzanski, C.D., Maximov, M.A., Gor, G.Y.: Effect of pore geometry on the compressibility of a confined simple fluid. J. Chem. Phys 148(5), 054503 (2018)Google Scholar
  13. Evans, R., Stewart, M.C.: The local compressibility of liquids near non-adsorbing substrates: a useful measure of solvophobicity and hydrophobicity? J. Phys. Condens. Matter 27(19), 194111 (2015)Google Scholar
  14. Gassmann, F.: Über die Elastizität poröser Medien. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich. 96, 1–23 (1951)Google Scholar
  15. Gor, G.Y.: Adsorption stress changes the elasticity of liquid argon confined in a nanopore. Langmuir 30(45), 13564–13569 (2014)Google Scholar
  16. Gor, G.Y.: Bulk modulus of not-so-bulk fluid. In: Poromechanics VI, Sixth Biot Conference on Poromechanics, pp. 465–472 (2017).  https://doi.org/10.1061/9780784480779.057
  17. Gor, G.Y., Gurevich, B.: Gassmann theory applies to nanoporous media. Geophys. Res. Lett. 45(1), 146–155 (2018)Google Scholar
  18. Gor, G.Y., Siderius, D.W., Rasmussen, C.J., Krekelberg, W.P., Shen, V.K., Bernstein, N.: Relation between pore size and the compressibility of a confined fluid. J. Chem. Phys 143(19), 194506 (2015)Google Scholar
  19. Gor, G.Y., Siderius, D.W., Shen, V.K., Bernstein, N.: Modulus–pressure equation for confined fluids. J. Chem. Phys. 145(16), 164505 (2016)Google Scholar
  20. Gor, G.Y., Huber, P., Bernstein, N.: Adsorption-induced deformation of nanoporous materials—a review. Appl. Phys. Rev. 4(1), 011303 (2017)Google Scholar
  21. Gregg, S.J., Sing, K.S.W.: Adsorption, surface area and porosity. Ber. Bunsenges. Phys. Chem. 86(10), 957 (1982)Google Scholar
  22. Hashin, Z., Shtrikman, S.: A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 11(2), 127–140 (1963)Google Scholar
  23. Huber, P.: Soft matter in hard confinement: phase transition thermodynamics, structure, texture, diffusion and flow in nanoporous media. J. Phys. Condens. Matter 27(10), 103102 (2015)Google Scholar
  24. Jones, T.D.: Pore fluids and frequency-dependent wave propagation in rocks. Geophysics 51(10), 1939–1953 (1986)Google Scholar
  25. Keeler, G., Batchelder, D.: Measurement of the elastic constants of argon from 3 to 77 degrees K. J. Phys. C Solid State Phys. 3(3), 510 (1970)Google Scholar
  26. Knorr, K., Wallacher, D., Huber, P., Soprunyuk, V., Ackermann, R.: Are solidified fillings of mesopores basically bulk-like except for the geometric confinement? Eur. Phys. J. E 12(1), 51–56 (2003)Google Scholar
  27. Kolesnikov, A., Georgi, N., Budkov, Y.A., Möllmer, J., Hofmann, J., Adolphs, J., Gläser, R.: Effects of enhanced flexibility and pore size distribution on adsorption-induced deformation of mesoporous materials. Langmuir 34, 7575–7584 (2018)Google Scholar
  28. Kowalczyk, P., Balzer, C., Reichenauer, G., Terzyk, A.P., Gauden, P.A., Neimark, A.V.: Using in situ adsorption dilatometry for assessment of micropore size distribution in monolithic carbons. Carbon 103, 263–272 (2016)Google Scholar
  29. Kuster, G.T., Toksöz, M.N.: Velocity and attenuation of seismic waves in two-phase media: part I. Theoretical formulations. Geophysics 39(5), 587–606 (1974)Google Scholar
  30. Landers, J., Gor, G.Y., Neimark, A.V.: Density functional theory methods for characterization of porous materials. Colloids. Surf. A Physicochem. Eng. Asp 437, 3–32 (2013)Google Scholar
  31. Mavko, G., Jizba, D.: Estimating grain-scale fluid effects on velocity dispersion in rocks. Geophysics 56(12), 1940–1949 (1991)Google Scholar
  32. Mavko, G., Mukerji, T., Dvorkin, J.: The rock physics handbook: tools for seismic analysis of porous media. Cambridge University Press, Cambridge (2009)Google Scholar
  33. Maximov, M.A., Gor, G.Y.: Molecular simulations shed light on potential uses of ultrasound in nitrogen adsorption experiments. Langmuir 34(51), 15650–15657 (2018)Google Scholar
  34. Milton, G.W.: The theory of composites. Cambridge University Press, Cambridge (2002)Google Scholar
  35. Molz, E., Wong, A.P., Chan, M., Beamish, J.: Freezing and melting of fluids in porous glasses. Phys. Rev. B 48(9), 5741 (1993)Google Scholar
  36. Müller, T.M., Gurevich, B., Lebedev, M.: Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks—a review. Geophysics 75(5), 75A147–175A164 (2010)Google Scholar
  37. Norris, A.: A differential scheme for the effective moduli of composites. Mech. Mater. 4(1), 1–16 (1985)Google Scholar
  38. Nygård, K.: Local structure and density fluctuations in confined fluids. Curr. Opin. Colloid Interface Sci. 22, 30–34 (2016)Google Scholar
  39. O’Connell, R.J., Budiansky, B.: Viscoelastic properties of fluid-saturated cracked solids. J. Geophys. Res. 82(36), 5719–5735 (1977)Google Scholar
  40. Page, J., Liu, J., Abeles, B., Herbolzheimer, E., Deckman, H., Weitz, D.: Adsorption and desorption of a wetting fluid in Vycor studied by acoustic and optical techniques. Phys. Rev. E 52(3), 2763 (1995)Google Scholar
  41. Schappert, K., Pelster, R.: Elastic properties and freezing of argon confined in mesoporous glass. Phys. Rev. B 78(17), 174108 (2008)Google Scholar
  42. Schappert, K., Pelster, R.: Freezing behavior of argon layers confined in mesopores. Phys. Rev. B 83(18), 184110 (2011)Google Scholar
  43. Schappert, K., Pelster, R.: Continuous freezing of argon in completely filled mesopores. Phys. Rev. Lett. 110(13), 135701 (2013a)Google Scholar
  44. Schappert, K., Pelster, R.: Elastic properties of liquid and solid argon in nanopores. J. Phys. Condens. Matter 25(41), 415302 (2013b)Google Scholar
  45. Schappert, K., Pelster, R.: Influence of the Laplace pressure on the elasticity of argon in nanopores. Europhys. Lett. 105(5), 56001 (2014)Google Scholar
  46. Schappert, K., Pelster, R.: Experimental method for the determination of adsorption-induced changes of pressure and surface stress in nanopores. J. Phys. Condens. Matter 29(6), 06LT01 (2016)Google Scholar
  47. Shimizu, H., Tashiro, H., Kume, T., Sasaki, S.: High-pressure elastic properties of solid argon to 70 GPa. Phys. Rev. Lett. 86(20), 4568 (2001)Google Scholar
  48. Siderius, D.W., Mahynski, N.A., Shen, V.K.: Relationship between pore-size distribution and flexibility of adsorbent materials: statistical mechanics and future material characterization techniques. Adsorption 23(4), 593–602 (2017)Google Scholar
  49. Smith, T.M., Sondergeld, C.H., Rai, C.S.: Gassmann fluid substitutions: a tutorial. Geophysics 68(2), 430–440 (2003)Google Scholar
  50. Thommes, M., Cychosz, K.A.: Physical adsorption characterization of nanoporous materials: progress and challenges. Adsorption 20(2–3), 233–250 (2014)Google Scholar
  51. Thommes, M., Smarsly, B., Groenewolt, M., Ravikovitch, P.I., Neimark, A.V.: Adsorption hysteresis of nitrogen and argon in pore networks and characterization of novel micro-and mesoporous silicas. Langmuir 22(2), 756–764 (2006)Google Scholar
  52. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87(9–10), 1051–1069 (2015)Google Scholar
  53. Ustinov, E., Do, D.: Effect of adsorption deformation on thermodynamic characteristics of a fluid in slit pores at sub-critical conditions. Carbon 44(13), 2652–2663 (2006)Google Scholar
  54. Wallacher, D., Knorr, K.: Melting and freezing of Ar in nanopores. Phys. Rev. B 63(10), 104202 (2001)Google Scholar
  55. Warner, K., Beamish, J.: Ultrasonic measurement of the surface area of porous materials. J. Appl. Phys. 63(9), 4372–4376 (1988)Google Scholar
  56. Wu, T.: The effect of inclusion shape on the elastic moduli of a two-phase material. Int. J. Solids Struct. 2(1), 1–8 (1966)Google Scholar
  57. Zimmerman, R.W.: Compressibility of sandstones, vol. 29. Elsevier, New York (1990)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Exploration GeophysicsCurtin UniversityPerthAustralia
  2. 2.CSIRO EnergyKensingtonAustralia
  3. 3.Otto H. York Department of Chemical and Materials EngineeringNew Jersey Institute of TechnologyNewarkUSA

Personalised recommendations