Advertisement

Adsorption

, Volume 26, Issue 2, pp 225–240 | Cite as

Insights into CO2 adsorption in amino-functionalized SBA-15 synthesized at different aging temperature

  • Juan A. Cecilia
  • Enrique Vilarrasa-GarcíaEmail author
  • Rafael Morales-Ospino
  • Moisés Bastos-Neto
  • Diana C. S. Azevedo
  • Enrique Rodríguez-Castellón
Article

Abstract

Mesoporous silica SBA-15 solids have been synthesized at different aging temperature with the goal of obtaining materials with different textural properties. The synthesized samples have been evaluated for their CO2 adsorption capacity. In order to increase the CO2 adsorption capacity and the CO2/N2 selectivity, the SBA-15 synthesized at different aging temperatures were functionalized via grafting with 3-aminopropyltriethoxysilane (APTES) and via impregnation with polyethyleniminethylenediamine branched (PEI) or tetraethylenepentamine (TEPA). In all cases, the adsorption isotherms of the amine functionalized silica are fitted to the Dualsite-Langmuir model, where physical and chemical adsorption sites are reported. The isotherms reveal that grafted-silicas with APTES displayed the coexistence of both adsorption sites, while the adsorption process of PEI or TEPA impregnated-silicas are mainly governed by chemical interactions. The adsorption isotherms show that the most promising adsorbent for CO2 capture in terms of CO2 adsorption capacity and CO2/N2 selectivity is the SBA synthesized at 393 K (aging temperature) and functionalized with TEPA (50 wt%) (SBA-393-50T). This sample reached a CO2 adsorption capacity of 2.83 mmol g−1 at 100 kPa and 338 K. The CO2 adsorption capacity of this material decreased around 5% after the first adsorption/desorption cycle, maintaining a constant value for successive cycles. SBA-393-50T also showed an outstanding CO2/N2 selectivity, increasing significantly as the CO2 concentration decreases.

Keywords

SBA-15 Pore size distribution CO2 adsorption Amine functionalization Aging temperature 

Notes

Acknowledgements

This research was funded by the Ministry of Science, Innovation and Universities. (Spain), Grant Nos. RTI2018-099668-B-C22 and FEDER funds. We also thank to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Ministry of Science and Technology, Brazil) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Ministry of Education, Brazil) for financial support.

References

  1. Brunauer, S., Emmett, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938)Google Scholar
  2. Brunetti, A., Scura, F., Barbieri, G., Drioli, E.: Membrane technologies for CO2 separation. J. Membr. Sci. 359, 115–125 (2010)Google Scholar
  3. Cecilia, J.A., Vilarrasa-García, E., Cavalcante Jr., C.L., Azevedo, D.C.S., Franco, F., Rodríguez-Castellón, E.: Evaluation of two fibrous clay minerals (sepiolite and palygorskite) for CO2 capture. J. Environ. Chem. Eng. 6, 4573–4587 (2018)Google Scholar
  4. Cecilia, J.A., Vilarrasa-García, E., García-Sancho, C., Saboya, R.M.A., Azevedo, D.C.S., Cavalcante Jr., C.L., Rodríguez-Castellón, E.: Functionalization of hollow silica microspheres by impregnation or grafted of amine groups for the CO2 capture. Int. J. Greenh. Gas Control 52, 344–356 (2016)Google Scholar
  5. Chen, C., Son, W.J., You, K.S., Ahn, J.W., Ahn, W.S.: Carbon dioxide capture using amine-impregnated HMS having textural mesoporosity. Chem. Eng. J. 161, 46–52 (2010)Google Scholar
  6. Charalambous, C., Santori, G., Vilarrasa-Garcia, E., Bastos-Neto, M., Cavalcante Jr., C.L., Brandani, S.: Pure and binary adsorption of carbon dioxide and nitrogen on AQSOA FAM Z02. J. Chem. Eng. Data 63, 661–670 (2018)Google Scholar
  7. de Boer, J.H., Lippens, B.C., Linsen, B.G., Broekhoff, J.C.P., van den Heuvel, A., Osinga, T.J.: The t-curve of multimolecular N2-adsorption. J. Colloid Interface Sci. 21, 405–414 (1966)Google Scholar
  8. Dey, R., Gupta, R., Samanta, A.: Carbon dioxide capture under postcombustion conditions using amine-functionalized SBA-15: kinetics and multicyclic performance. Sep. Sci. Technol. 53(16), 2683–2694 (2018)Google Scholar
  9. Didas, S.A., Sakwa-Novak, M.A., Foo, G.S., Sievers, C., Jones, C.W.: Effect of amine surface coverage on the co-adsorption of CO2 and water: spectral deconvolution of adsorbed species. J. Phys. Chem. Lett. 5, 4194–4200 (2014)PubMedGoogle Scholar
  10. Do, D.D.: Adsorption Analysis: Equilibria and Kinetics. Imperial College Press, London (1998)Google Scholar
  11. Drage, T.C., Blackman, J.M., Pevida, C., Snape, C.E.: Evaluation of activated carbon adsorbents for CO2 capture in gasification. Energy Fuels 23, 2790–2796 (2009)Google Scholar
  12. Dreisbach, F., Lösch, H.W., Harting, P.: Highest pressure adsorption equilibria data: measurement with magnetic suspension balance and analysis with a new adsorbent/adsorbate-volume. Adsorption 8(2), 95–109 (2002a)Google Scholar
  13. Dreisbach, F., Reza Seif, A.H., Lösch, H.W.: Gravimetric measurement of adsorption equilibria of gas mixture CO2/H2 with a magnetic suspension balance. Chem. Eng. Technol. 25(11), 1060–1065 (2002b)Google Scholar
  14. Feng, X., Hu, G., Hu, X., Xie, G., Xie, Y., Lu, J., Luo, M.: Tetraethylenepentamine-modified siliceous mesocellular foam (MCF) for CO2 capture. Ind. Eng. Chem. Res. 52, 4221–4228 (2013)Google Scholar
  15. Fulvio, P.F., Pikus, S., Jaroniec, M.: Tailoring properties of SBA-15 materials by controlling conditions of hydrothermal synthesis. J. Mater. Chem. 15, 5049–5053 (2005)Google Scholar
  16. Galarneau, A., Cambon, H., Di Renzo, F., Fajula, F.: True microporosity and surface area of mesoporous SBA-15 silicas as a function of synthesis temperature. Langmuir 17, 8328–8335 (2001)Google Scholar
  17. Gao, W., Zhou, T., Wang, Q.: Controlled synthesis of MgO with diverse basic sites and its CO2 capture mechanism under different adsorption conditions. Chem. Eng. J. 336, 710–720 (2018)Google Scholar
  18. García, S., Gil, M.V., Martín, C.F., Pis, J.J., Rubiera, F., Pevida, C.: Breakthrough adsorption study of a commercial activated carbon for pre-combustion CO2 capture. Chem. Eng. J. 171, 549–556 (2011)Google Scholar
  19. Guo, X., Ding, L., Kanamori, K., Nakanishi, K., Yang, H.: Functionalization of hierarchically porous silica monoliths with polyethyleneimine (PEI) for CO2 adsorption. Microporous Mesoporous Mater. 245, 51–57 (2017)Google Scholar
  20. Haque, E., Islam, M., Pourazadi, E., Sarkar, S., Harris, A.T., Minett, A.I., Yanmaz, E., Alshehri, S.M., Ide, Y., Wu, K.C.W., Kaneti, Y.V., Yamauchi, Y., Hossain, S.A.: Boron functionalized graphene oxide-organic frameworks for highly efficient CO2 capture. Chem. Asian J. 12, 283–288 (2017)PubMedGoogle Scholar
  21. Hiremath, V., Hwang, S., Seo, J.G.: Enhanced cyclic stability and CO2 capture performance of MgO-Al2O3 sorbent decorated with eutectic mixture. Energy Procedia 114, 2421–2428 (2017)Google Scholar
  22. Hiyoshi, N., Yogo, Y., Yashima, T.: Adsorption characteristics of carbon dioxide on organically functionalized SBA-15. Microporous Mesoporous Mater. 84, 357–365 (2005)Google Scholar
  23. Hou, X., Zhuang, L., Ma, B., Chen, S., He, H., Yin, F.: Silanol-rich platelet silica modified with branched amine for efficient CO2 capture. Chem. Eng. Sci. 181, 315–325 (2018)Google Scholar
  24. Huang, C.C., Tour, J.J., Kittrell, C., Espinal, L., Alemany, L.B., Tour, J.M.: Capturing carbon dioxide as a polymer from natural gas. Nature Commun. 5, 3961 (2014)Google Scholar
  25. Huang, C.M., Hsu, H.W., Liu, W.H., Cheng, J.Y., Chen, W.C., Wen, T.W., Chen, W.: Development of post-combustion CO2 capture with CaO/CaCO3 looping in a bench scale plant. Energy Procedia 4, 1268–1275 (2011)Google Scholar
  26. Huang, N., Chen, X., Krishna, R., Jiang, D.: Two-dimensional covalent organic frameworks for carbon dioxide capture through channel-wall functionalization. Angew. Chem. Int. Ed. 54, 2986–2990 (2015)Google Scholar
  27. Jiao, J., Cao, J., Xia, Y., Zhao, L.: Improvement of adsorbent materials for CO2 capture by amine functionalized mesoporous silica with worm-hole framework structure. Chem. Eng. J. 306, 9–16 (2016)Google Scholar
  28. Landers, J., Gor, G.Y., Neimark, A.V.: Density functional theory methods for characterization of porous materials. Colloid Surf. A 437, 3–32 (2013)Google Scholar
  29. Lashaki, M.J., Sayari, A.: CO2 capture using triamine-grafted SBA-15: the impact of the support pore structure. Chem. Eng. J. 334, 1260–1269 (2018)Google Scholar
  30. Lee, S.C., Chae, H.J., Lee, S.J., Choi, B.Y., Yi, C.K., Lee, J.B., Ryu, C.K., Kim, J.C.: Development of regenerable MgO-based sorbent promoted with K2CO3 for CO2 capture at low temperatures. Environ. Sci. Technol. 42, 2736–2741 (2008)PubMedGoogle Scholar
  31. Lin, Y., Kong, C., Zhang, Q., Chen, L.: Metal-organic frameworks for carbon dioxide capture and methane storage. Adv. Energy Mater. 7, 1601296 (2017)Google Scholar
  32. Lin, Z., Wei, J.: CO2 adsorption on activated carbon/SBA-15 with TETA/TEPA modification. Key Eng. Mater. 735, 164–167 (2017)Google Scholar
  33. McGrail, B.P., Schaef, H.T., Spane, F.A., Cliff, J.B., Qafoku, O., Horner, J.A., Thompson, C.J., Owen, A.T., Sullivan, C.E.: Field validation of supercritical CO2 reactivity with basalts. Environ. Sci. Technol. Lett. 4, 6–10 (2017)Google Scholar
  34. Mello, M.R., Phanon, D., Silveira, G.Q., Llewellyn, P.L., Ronconi, C.M.: Amine-modified MCM-41 mesoporous silica for carbon dioxide capture. Microporous Mesoporous Mater. 143, 174–179 (2011)Google Scholar
  35. Merel, J., Clausse, M., Meunier, F.: Experimental investigation on CO2 post-combustion capture by indirect thermal swing adsorption using 13X and 5A zeolites. Ind. Eng. Chem. Res. 47, 209–215 (2008)Google Scholar
  36. Min, K., Choi, W., Choi, M.: Macroporous silica with thick framework for steam-stable and high-performance poly(ethyleneimine)/silica CO2 adsorbent. Chemsuschem 10(11), 2518–2526 (2017)PubMedGoogle Scholar
  37. Nikulshina, V., Gebald, C., Steinfeld, A.: CO2 capture from atmospheric air via consecutive CaO-carbonation and CaCO3-calcination cycles in a fluidized-bed solar reactor. Chem. Eng. J. 146, 244–248 (2009)Google Scholar
  38. Olea, A., Sanz-Pérez, E.S., Arencibia, A., Sanz, R., Calleja, G.: Amino-functionalized pore-expanded SBA-15 for CO2 adsorption. Adsorption 19(2–4), 589–600 (2013)Google Scholar
  39. Pera-Titus, M.: Porous inorganic membranes for CO2 capture: present and prospects. Chem. Rev. 114, 1413–1492 (2014)PubMedGoogle Scholar
  40. Plaza, M.G., García, S., Rubiera, F., Pis, J.J., Pevida, C.: Post-combustion CO2 capture with a commercial activated carbon: comparison of different regeneration strategies. Chem. Eng. J. 163, 41–47 (2010)Google Scholar
  41. Rao, N., Wang, M., Shang, Z., Hou, Y., Fan, G., Li, J.: CO2 adsorption by amine-functionalized MCM-41: a comparison between impregnation and grafting modification methods. Energy Fuels 32, 670–677 (2018)Google Scholar
  42. Reddy, M.K.R., Xu, Z.P., Lu, G.Q., da Costa, J.C.D.: Layered double hydroxides for CO2 capture: structure evolution and regeneration. Ind. Eng. Chem. Res. 45, 7504–7509 (2006)Google Scholar
  43. Sánchez-Zambrano, K.S., Duarte, L.L., Maia, D.A.S., Vilarrasa-García, E., Bastos-Neto, M., Rodríguez-Castellón, E., Azevedo, D.C.S.: CO2 capture with mesoporous silicas modified with amines by double functionalization: assessment of adsorption/desorption cycles. Materials 11, 887–906 (2018)PubMedCentralGoogle Scholar
  44. Santos, S.C.G., Garrido Pedrosa, A.M., Souza, M.J.B., Cecilia, J.A., Rodríguez- Castellón, E.: Carbon dioxide adsorption on micro-mesoporous composite materials of ZSM-12/MCM-48 type: the role of the contents of zeolite and functionalized amine. Mater. Res. Bull. 70, 663–672 (2015)Google Scholar
  45. Sanz, R., Calleja, G., Arencibia, A., Sanz-Pérez, E.S.: CO2 adsorption on branched polyethyleneimine-impregnated mesoporous silica SBA-15. Appl. Surf. Sci. 256, 5323–5328 (2010)Google Scholar
  46. Sanz, R., Calleja, G., Arencibia, A., Sanz-Perez, E.S.: Development of high efficiency adsorbents for CO2 capture based on a double-functionalization method of grafting and impregnation. J. Mater. Chem. A 1, 1956–1962 (2013)Google Scholar
  47. Sánz-Pérez, E.S., Dantas, T.C.M., Arencibia, A., Calleja, G., Guedes, A.P.M.A., Araujo, A.S., Sanz, R.: Reuse and recycling of amine-functionalized silica materials for CO2 adsorption. Chem. Eng. J. 308, 1021–1033 (2017)Google Scholar
  48. Sanz-Pérez, E.S., Murdock, C.R., Didas, S.A., Jones, C.W.: Direct capture of CO2 from ambient air. Chem. Rev. 116, 11840–11876 (2016)PubMedGoogle Scholar
  49. Sanz-Pérez, E.S., Olivares-Marín, M., Arencibia, A., Sanz, R., Calleja, G., Maroto-Valer, M.M.: CO2 adsorption performance of amino-functionalized SBA-15 under postcombustión conditions. Int. J. Greenh. Gas Control 17, 366–375 (2013)Google Scholar
  50. Sayari, A., Belmabkhout, Y., Serna-Guerrero, R.: Flue gas treatment via CO2 adsorption. Chem. Eng. J. 171, 760–774 (2011)Google Scholar
  51. Sayari, A., Heydari-Gorji, A., Yang, Y.: CO2-induced degradation of amine-containing adsorbents: reaction products and pathways. J. Am. Chem. Soc. 134, 13834–13842 (2012)PubMedGoogle Scholar
  52. Stephens, G.L., Kahn, B.H., Richardson, M.: The super greenhouse effect in a changing climate. J. Clim. 29, 5469–5482 (2016)Google Scholar
  53. Snæbjörnsdóttir, S.O., Gislason, S.R.: CO2 storage potential of basaltic rocks offshore Iceland. Energy Procedia 86, 371–380 (2016)Google Scholar
  54. Son, W.-J., Choi, J.-S., Ahn, W.-S.: Adsorptive removal of carbon dioxide using polyethyleneimine—loaded mesoporous silica materials. Microporous Mesoporous Mater. 113, 31–40 (2008)Google Scholar
  55. Sumida, K., Rogow, D.L., Mason, J.A., McDonald, T.M., Bloch, E.D., Herm, Z.R., Bae, T.H., Long, J.R.: Carbon dioxide capture in metal-organic frameworks. Chem. Rev. 112, 724–781 (2012)PubMedGoogle Scholar
  56. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051–1069 (2015)Google Scholar
  57. Vilarrasa-Garcıa, E., Cecilia, J.A., Bastos-Neto, M., Cavalcante Jr., C.L., Azevedo, D.C.S., Rodriguez-Castellon, E.: CO2/CH4 adsorption separation process using pore expanded mesoporous silicas functionalizated by APTES grafting. Adsorption 21, 565–575 (2015)Google Scholar
  58. Vilarrasa-García, E., Cecilia, J.A., Bastos-Neto, M., Cavalcante Jr., C.L., Azevedo, D.C.S., Rodríguez-Castellón, E.: Microwave-assisted nitric acid treatment of sepiolite and functionalization with polyethylenimine applied to CO2 capture and CO2/N2 separation. Appl. Surf. Sci. 410, 315–325 (2017)Google Scholar
  59. Vilarrasa-García, E., Cecilia, J.A., Ortigosa-Moya, E.M., Cavalcante Jr., C.L., Azevedo, D.C.S., Rodríguez-Castellón, E.: “Low-cost” pore expanded SBA-15 functionalized with amine groups applied to CO2 adsorption. Materials 8, 2495–2513 (2015a)PubMedCentralGoogle Scholar
  60. Vilarrasa-García, E., Cecilia, J.A., Santos, S.M.L., Cavalcante Jr., C.L., Jiménez-Jiménez, J., Azevedo, D.C.S., Rodríguez-Castellón, E.: CO2 adsorption on APTES functionalized mesocellular foams obtained from mesoporous silicas. Microporous Mesoporous Mater. 187, 125–134 (2014)Google Scholar
  61. Vilarrasa-García, E., Ortigosa-Moya, E.M., Cecilia, J.A., Cavalcante Jr., C.L., Jiménez-Jiménez, J., Azevedo, D.C.S., Rodríguez-Castellón, E.: CO2 adsorption on amine modified mesoporous silicas: effect of the progressive disorder of the honeycomb arrangement. Microporous Mesoporous Mater. 209, 172–183 (2015b)Google Scholar
  62. Wang, X., Schwartz, V., Clark, J.C., Ma, X., Overbury, S.H., Xu, X., Song, C.: Infrared study of CO2 sorption over “molecular basket” sorbent consisting of polyethylenimine-modified mesoporous molecular sieve. J. Phys. Chem. C 113, 7260–7268 (2009)Google Scholar
  63. Xu, X., Song, C., Andrésen, J.M., Miller, B.G., Scaroni, A.W.: Preparation and characterization of novel CO2 molecular basket adsorbents based on polymer-modified mesoporous molecular sieve MCM-41. Microporous Mesoporous Mater. 62, 29–45 (2003)Google Scholar
  64. Yan, X., Zhang, L., Zhang, Y., Qiao, K., Yan, Z., Komarneni, S.: Amine-modified mesocellular silica foams for CO2 capture. Chem. Eng. J. 168, 918–924 (2011)Google Scholar
  65. Zeng, Y., Zou, R., Zhao, Y.: Covalent organic frameworks for CO2 capture. Adv. Mater. 28, 2855–2873 (2016)PubMedGoogle Scholar
  66. Zhang, J., Singh, R., Webley, P.A.: Alkali and alkaline-earth cation exchanged chabazite zeolites for adsorption based CO2 capture. Microporous Mesoporous Mater. 111, 478–487 (2008)Google Scholar
  67. Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G.H., Chmelka, B.F., Stucky, G.D.: Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pore. Science 279, 548–552 (1998)PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Inorganic Chemistry, Crystallography and MineralogyUniversidad de MálagaMálagaSpain
  2. 2.Department of Chemical Engineering, Grupo de Pesquisa em Separações por AdsorçãoUniversidade Federal do CearáFortalezaBrazil

Personalised recommendations