Advertisement

Adsorption

, Volume 26, Issue 2, pp 217–223 | Cite as

Inorganic mesoporous silica foams for use in stabilization and controlled release of isothiazolinone-based biocides: influence of silica textural properties

  • Lucas E. Mardones
  • María S. LegnoverdeEmail author
  • Elena I. Basaldella
Article
  • 58 Downloads

Abstract

The synthesis of mesocellular siliceous foam materials (MCFs) was performed at different stirring rates. In this way, foam samples composed of solid particles differing in size and morphology were obtained. Afterwards, the influence of these physical properties on the adsorptive behavior of the synthesized samples was checked for the adsorption/desorption of an isothiazolone-based commercial biocide (BIO). Results show that at low stirring rates small spheroidal particles were produced. In the absence of stirring, large blocks of silica presenting their external surface fully covered by small homogeneous silica spheres were obtained. Cauliflower-type morphologies were obtained at intermediate stirring rates, while the particle shape became irregular when the stirring rate was increased. On the contrary, the mesostructure and pore size of the particles obtained in the different samples were comparable. The biocide adsorption as well as its subsequent release in aqueous media were strongly affected by the particle size of the silica foam. Adsorption and release tests show that BIO encapsulation in silica foams preserves the biocide structure, obtaining the best performance of controlled release with the matrix synthesized at 400 rpm.

Keywords

Mesoporous silicas Stirring rate Adsorption Biocides Isothiazolinones 

Notes

Acknowledgments

The authors thank CIC-PBA, FONCyT (Project PICT 2015-0480), UNLP and CONICET for their financial support. E.I. Basaldella is a member of CIC-PBA.

References

  1. Aerts, O., Lambert, J., Goossens, A.: Structures chimiques et allergies croisées entre isothiazolinones. Rev. Fr. Allergol. 57, 178–180 (2017)CrossRefGoogle Scholar
  2. Brunauer, S., Emmet, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938)CrossRefGoogle Scholar
  3. Cabrera-Munguia, D.A., González, H., Gutiérrez-Alejandre, A., Rico, J.L., Huirache-Acuña, R., Maya-Yescas, R., del Río, R.: Heterogeneous acid conversion of a tricaprylin-palmitic acid mixture over Al-SBA-15 catalysts: reaction study for biodiesel synthesis. Catal. Today 282, 195–203 (2017)CrossRefGoogle Scholar
  4. Carrero, A., Moreno, J., Aguado, J., Calleja, G.: Control of SBA-15 materials morphology by modification of synthesis conditions. In: Gédéon A., Massiani P., Babonneau F. (eds) Zeolites and Related Materials: Trends, Targets and Challenges. Proceedings of 4th International FEZA Conference. pp. 321-324. Elsevier, Amsterdam (2008)CrossRefGoogle Scholar
  5. Chan, H.B.S., Budd, P.M., Naylor, T.D.J.: Control of mesostructured silica particle morphology. Mater. Chem. 11, 951–957 (2001)CrossRefGoogle Scholar
  6. Chen, S., Zhang, X., Han, Q., Yu Ding, M.: Synthesis of highly dispersed mesostructured cellular foam silica sphere and its application in high-performance liquid chromatography. Talanta 101, 396–404 (2012)CrossRefGoogle Scholar
  7. Chu, X., Cheng, Z., Xiang, X., Xu, J., Zhao, Y., Zhang, W., Lv, J., Zhou, Y., Zhou, L., Moon, D., Lee, C.: Separation dynamics of hydrogen isotope gas in mesoporous and microporous adsorbent beds at 77 K: SBA-15 and zeolites 5A, Y, 10X. Int. J. Hydrogen Energy 39, 4437–4446 (2014)CrossRefGoogle Scholar
  8. Cides da Silva, L.C., dos Reis, T.V.S., Cosentino, I.C., Fantini, M.C.A., Matos, J.R., Bruns, R.E.: Factorial design to optimize microwave-assisted synthesis of FDU-1 silica with a new triblock copolymer. Microporous Mesoporous Mater. 133, 1–9 (2010)CrossRefGoogle Scholar
  9. Do Valle Gomes, M., Palmqvist, A.: Immobilization of formaldehyde dehydrogenase in tailored siliceous mesostructured cellular foams and evaluation of its activity for conversion of formate to formaldehyde. Colloids Surf. B 163, 41–46 (2018)CrossRefGoogle Scholar
  10. Garcia-Hidalgo, E., Schneider, D., von Goetz, N., Delmaar, C., Siegrist, M., Hungerbühler, K.: Aggregate consumer exposure to isothiazolinones via household care and personal care products: probabilistic modelling and benzisothiazolinone risk assessment. Environ. Int. 118, 245–256 (2018)CrossRefGoogle Scholar
  11. Giácaman-von der Weth, M., Pérez-Ferriols, A., Sierra-Talamantes, C., Zaragoza-Ninet, V.: Allergic sensitization to isothiazolinones in patients referred for photobiologic study. Actas Dermosifiliogr. 109(3), 291–292 (2018)CrossRefGoogle Scholar
  12. Hunziker, N.: The “isothiazolinone story”. Dermatology 184, 85–86 (1992)CrossRefGoogle Scholar
  13. Hwang, Y.K., Chang, J.S., Kwon, Y.U., Park, S.E.: Microwave synthesis of cubic mesoporous silica SBA-16. Microporous Mesoporous Mater. 68, 21–27 (2004)CrossRefGoogle Scholar
  14. Kresmann, S., Arokia, A.H.R., Kocha, C., Sures, B.: Ecotoxicological potential of the biocides terbutryn, octhilinone and methylisothiazolinone: underestimated risk from biocidal pathways? Sci. Total Environ. 625, 900–908 (2018)CrossRefGoogle Scholar
  15. Lettow, J.S., Han, Y.J., Schmidt-Winkel, P., Yang, P., Zhao, D., Stucky, G.D., Ying, J.Y.: Hexagonal to mesocellular foam phase transition in polymer-templated mesoporous silicas. Langmuir 16, 8291–8295 (2000)CrossRefGoogle Scholar
  16. Liu, X., Zhai, X., Liu, D., Sun, Y.: Different CO2 absorbents-modified SBA-15 sorbent for highly selective CO2 capture. Chem. Phys. Lett. 676, 53–57 (2017)CrossRefGoogle Scholar
  17. Mardones, L., Legnoverde, M., Pereyra, A., Basaldella, E.: Long-lasting isothiazolinone-based biocide obtained by encapsulation in micron-sized mesoporous matrices. Prog. Org. Coat. 119, 155–163 (2018)CrossRefGoogle Scholar
  18. Mazilu, I., Ciotonea, C., Chirieac, A., Dragoi, B., Catrinescu, C., Ungureanu, C., Petit, S., Royer, S., Dumitriu, E.: Synthesis of highly dispersed iron species within mesoporous (Al-) SBA-15 silica as efficient heterogeneous Fenton-type catalysts. Microporous Mesoporous Mater. 241, 326–337 (2017)CrossRefGoogle Scholar
  19. Meoto, S., Kent, N., Nigra, M., Coppens, M.: Effect of stirring rate on the morphology of FDU-12 mesoporous silica particles. Microporous Mesoporous Mater. 249, 61–66 (2017)CrossRefGoogle Scholar
  20. Nagorka, R., Gleue, C., Scheller, C., Moriske, H., Straff, W.: Isothiazolone emissions from building products. Indoor Air 25, 68–78 (2015)CrossRefGoogle Scholar
  21. Pitchumani, R., Li, W., Coppens, M.O.: Tuning the morphology of SBA-15 by stirring in the presence of phosphoric acid: films, cakes, fibers and bundles of threads. Stud. Surf. Sci. Catal. 156, 83–88 (2005)CrossRefGoogle Scholar
  22. Rafoth, A., Gabriel, S., Sacher, F., Brauch, H.: Analysis of isothiazolinones in environmental waters by gas chromatography–mass spectrometry. J. Chromatogr. A 1164, 74–81 (2007)CrossRefGoogle Scholar
  23. Regulation EC, 2008. No. 1272/2008 of the European Parliament and of the Council on classification, labeling and packaging of substances and mixtures, amending and repealing directives 67/548/EEC and 1999/45/EC, and amending regulation (EC.) No. 1907/2006. In: Eur Union: L353 (2008)Google Scholar
  24. Rui, Y., Wu, X., Ma, B., Xu, Y.: Immobilization of acetylcholinesterase on functionalized SBA-15 mesoporous molecular sieve for detection of organophosphorus and carbamate pesticide. Chin. Chem. Lett. 29, 1387–1390 (2018)CrossRefGoogle Scholar
  25. Schmidt-Winkel, P., Lukens, W., Zhao, D., Yang, P., Chmelka, B., Stucky, G.: mesocellular siliceous foams with uniformly sized cells and windows. J. Am. Chem. Soc. 121, 254–255 (1999)CrossRefGoogle Scholar
  26. Schmidt-Winkel, P., Glinka, C.J., Stucky, G.D.: Microemulsion templates for mesoporous silica. Langmuir 16, 356–361 (2000a)CrossRefGoogle Scholar
  27. Schmidt-Winkel, P., Lukens, W., Yang, P., Margolese, D., Lettow, J., Ying, J., Stucky, G.: Microemulsion templating of siliceous mesostructured cellular foams with well-defined ultralarge mesopores. Chem. Mater. 12, 686–696 (2000b)CrossRefGoogle Scholar
  28. Smuszkiewicz, A., Pérez-Mayoral, E., Soriano, E., Sobczak, I., Ziolek, M., Martín-Aranda, R.M., López-Peinado, A.J.: Bifunctional mesoporous MCF materials as catalysts in the Friedländer condensation. Catal. Today 218–219, 70–75 (2013)CrossRefGoogle Scholar
  29. Somidi, A., Roayapalley, P., Dalai, A.: Synthesis of O-propylated canola oil derivatives using Al-SBA-15 (10) catalyst and study on their application as fuel additive. Catal. Today 291, 204–212 (2017)CrossRefGoogle Scholar
  30. Villarroel-Rocha, J., Barrera, D., Sapag, K.: Introducing a self-consistent test and the corresponding modification in the Barrett, Joyner and Halenda method for pore-size determination. Microporous Mesoporous Mater. 200, 68–78 (2014)CrossRefGoogle Scholar
  31. Yu, C., Fan, J., Tian, B., Zhao, D.: morphology development of mesoporous materials: a colloidal phase separation mechanism. Chem. Mater. 16, 889–898 (2004)CrossRefGoogle Scholar
  32. Zhang, Z., Li, L., Wang, H., Guo, L., Zhai, Y., Zhang, J., Yang, Y., Wang, H., Yin, Z., Lu, Y.: Preparation of molecularly imprinted ordered mesoporous silica for rapid and selective separation of trace bisphenol A from water samples. Appl. Surf. Sci. 448, 380–388 (2018)CrossRefGoogle Scholar
  33. Zhao, D.Y., Sun, J.Y., Li, Q.Z., Stucky, G.D.: morphological control of highly ordered mesoporous silica SBA-15. Chem. Mater. 12, 275–279 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centro de Investigación y Desarrollo en Ciencias Aplicadas (CINDECA-CONICET-CICPBA-UNLP)La PlataArgentina

Personalised recommendations