pp 1–14 | Cite as

Adsorption behavior of oxalic acid at water–feldspar interface: experiments and molecular simulation

  • Xiaopeng Xue
  • Wei Wang
  • Hao Fan
  • Zhonghao Xu
  • Israel Pedruzzi
  • Ping LiEmail author
  • Jianguo YuEmail author


Feldspar belongs to aluminosilicate minerals with a huge reserve, accounting for at least 98% in soil minerals. Oxalic acid is the common organic matter in the natural world, having three configurations (H2C2O4, HC2O4 and C2O42−) dependent on pH value in water solution. In this work, the adsorption behavior of oxalic acid at water–feldspar interface were investigated at the molecular level through molecular dynamic simulation and advanced characterization technologies in order to provide the useful information for bioleaching and flotation industry. Classical molecular dynamic (MD) simulation, density functional theory (DFT) calculation and frequency calculation were performed to analyze adsorption behavior of oxalic acid at water–feldspar interface. Adsorption of H2C2O4 on feldspar surface belonged to physical outer-sphere adsorption with hydrogen bond while adsorption of HC2O4 and C2O42− belonged to inner-sphere adsorption with Al–O bond based on the molecular dynamic simulation results. Frequency calculation demonstrated both HC2O4 and C2O42− complexed with Al active site rather than Si site on feldspar surface, and the detected ATR-FTIR spectra were also in agreement with the simulated results. Dissolution experiments of feldspar with oxalic acid and TGA–DSC analysis of feldspar after oxalic acid adsorption were carried out to evaluate the adsorption behavior. Adsorption mechanism of oxalic acid on feldspar surface was proposed.


Adsorption Oxalic acid Feldspar Molecular simulation Mineral dissolution 



The authors wish to acknowledge National Natural Science Foundation of China (No. 21776089, No. U1610102, No. 21506063) and the International S&T Cooperation Program of China (No. 2016YFE0132500).


  1. Alstadt, V.J., Kubicki, J.D., Freedman, M.A.: Competitive adsorption of acetic acid and water on kaolinite. J. Phys. Chem. A 120, 8339–8346 (2016)CrossRefGoogle Scholar
  2. Ataman, E., Andersson, M.P., Ceccato, M., Bovet, N., Stipp, S.L.S.: Functional group adsorption on calcite: I. Oxygen containing and nonpolar organic molecules. J. Phys. Chem. C 120, 16586–16596 (2016)CrossRefGoogle Scholar
  3. Biber, M.V., Afonso, M.D.S., Stumm, W.: The coordination chemistry of weathering: IV. Inhibition of the dissolution of oxide minerals. Geochim. Cosmochim. Acta 58, 1999–2010 (1994)CrossRefGoogle Scholar
  4. Biber, M.V., Stumm, W.: An in situ ATR-FTIR study: the surface coordination of salicylic acid on aluminum and iron(III) oxides. Environ. Sci. Technol. 28, 763–768 (1994)CrossRefGoogle Scholar
  5. Budi, A., Stipp, S.L.S., Andersson, M.P.: Calculation of entropy of adsorption for small molecules on mineral surfaces. J. Phys. Chem. C 122, 8236–8243 (2018)CrossRefGoogle Scholar
  6. Cama, J., Ganor, J.: The effects of organic acids on the dissolution of silicate minerals: a case study of oxalate catalysis of kaolinite dissolution. Geochim. Cosmochim. Acta 70, 2191–2209 (2006)CrossRefGoogle Scholar
  7. Criscenti, L.J., Brantley, S.L., Mueller, K.T., Tsomaia, N., Kubicki, J.D.: Theoretical and 27 Al CPMASS NMR investigation of aluminum coordination changes during aluminosilicate dissolution. Geochim. Cosmochim. Acta 69, 2205–2220 (2005)CrossRefGoogle Scholar
  8. Crundwell, F.K.: The mechanism of dissolution of minerals in acidic and alkaline solutions: partII application of a new theory to silicates, aluminosilicates and quartz. Hydrometallurgy 149, 265–275 (2014)CrossRefGoogle Scholar
  9. Duckworth, O.W., Martin, S.T.: Surface complexation and dissolution of hematite by C1-C6, dicarboxylic acids at pH 5.0. Geochim. Cosmochim. Acta 65, 4289–4301 (2001)CrossRefGoogle Scholar
  10. Feng, Q., Wen, S., Deng, J., Zhao, W.: Combined DFT and XPS investigation of enhanced adsorption of sulfide species onto cerussite by surface modification with chloride. Appl. Surf. Sci. 425, 8–15 (2017)CrossRefGoogle Scholar
  11. Filby, A., Plaschke, M., Geckeis, H.: AFM force spectroscopy study of carboxylated latex colloids interacting with mineral surfaces. Colloid. Surf A 414, 400–414 (2012)CrossRefGoogle Scholar
  12. Furrer, G., Stumm, W.: The coordination chemistry of weathering: I. Dissolution kinetics of δ-Al2O3 and BeO. Geochim. Cosmochim. Acta. 50, 1847–1860 (1986)CrossRefGoogle Scholar
  13. Ha, J., Yoon, T.H., Wang, Y., Musgrave Jr., C.B., Brown, G.E.: Adsorption of organic matter at mineral/water interfaces: 7. ATR-FTIR and quantum chemical study of lactate interactions with hematite nanoparticles. Langmuir 24, 6683–6692 (2008)CrossRefGoogle Scholar
  14. Han, B., Viswanathan, V., Pitsch, H.: First-principles based analysis of the electrocatalytic activity of the unreconstructed Pt(100) surface for oxygen reduction reaction. J. Phys. Chem. C 116, 6174–6183 (2012)CrossRefGoogle Scholar
  15. Jin, X., Yan, Y., Shi, W., Bi, S.: Density functional theory studies on the structures and water-exchange reactions of aqueous Al(III)–oxalate complexes. Environ. Sci. Technol. 45, 10082–10090 (2011)CrossRefGoogle Scholar
  16. Johnson, S.B., Yoon, T.H., Kocar Jr., B.D., Brown, G.: Adsorption of Organic matter at mineral/water interfaces: 2. Outer-sphere adsorption of maleate and implications for dissolution processes. Langmuir 20, 4996–5006 (2004a)CrossRefGoogle Scholar
  17. Johnson, S.B., Yoon, T.H., Slowey Jr., A.J., Brown, G.: Adsorption of organic matter at mineral/water interfaces: 3. Implications of surface dissolution for adsorption of oxalate. Langmuir 20, 11480–11492 (2004b)CrossRefGoogle Scholar
  18. Johnson, S.B., Brown, G., Healy, T.W., Scales, P.J.: Adsorption of organic matter at mineral/water interfaces: 6. effect of inner-sphere versus outer-sphere adsorption on colloidal stability. Langmuir 21, 6356–6365 (2005)CrossRefGoogle Scholar
  19. Kubicki, J.D., Blake, G.A., Apitz, S.E.: Molecular orbital models of aqueous aluminum-acetate complexes. Geochim. Cosmochim. Acta 60, 4897–4911 (1996)CrossRefGoogle Scholar
  20. Kubicki, J.D., Itoh, M.J., And, L.M.S., Apitz, S.E.: Bonding mechanisms of salicylic acid adsorbed onto illite clay: an ATR-FTIR and molecular orbital study. Environ. Sci. Technol. 31, 1151–1156 (1997)CrossRefGoogle Scholar
  21. Kubicki, J.D., Schroeter, L.M., Itoh, M.J., Nguyen, B.N., Apitz, S.E.: Attenuated total reflectance fourier-transform infrared spectroscopy of carboxylic acids adsorbed onto mineral surfaces. Geochim. Cosmochim. Acta 63, 2709–2725 (1999)CrossRefGoogle Scholar
  22. Negro, A.D., Pieri, R.D., Quareni, S., Taylor, W.H.: The crystal structures of nine K feldspars from the Adamello Massif (northern Italy) addendum. Acta Cryst. 34, 3843 (1978)CrossRefGoogle Scholar
  23. Nunzi, F., Angelis, F.D.: DFT investigations of formic acid adsorption on single-wall TiO2 nanotubes: effect of the surface curvature. J. Phys. Chem. C 115, 2179–2186 (2010)CrossRefGoogle Scholar
  24. Oelkers, E.H., Golubev, S.V., Pokrovsky, O.S., Bénézeth, P.: Do organic ligands affect calcite dissolution rates? Geochim. Cosmochim. Acta 75, 1799–1813 (2011)CrossRefGoogle Scholar
  25. Pettibone, J.M., Cwiertny, D.M., Scherer, M., Grassian, V.H.: Adsorption of organic acids on tio2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation. Langmuir 24, 6659–6667 (2008)CrossRefGoogle Scholar
  26. Rai, B., Sathish, P., Tanwar, J., Moon, K.S., Fuerstenau, D.W.: A molecular dynamics study of the interaction of oleate and dodecylammonium chloride surfactants with complex aluminosilicate minerals. J. Colloid. Interf. Sci. 362, 510–516 (2011)CrossRefGoogle Scholar
  27. Ramos, M.E., Emiroglu, C., García, D., Sainzdiaz, C.I., Huertas, F.J.: Modeling the adsorption of oxalate onto montmorillonite. Langmuir 31, 11825–11834 (2015)CrossRefGoogle Scholar
  28. Ramos, M.E., Garcia-Palma, S., Rozalen, M., Johnston, C.T., Huertas, F.J.: Kinetics of montmorillonite dissolution: an experimental study of the effect of oxalate. Chem. Geol. 363, 283–292 (2014)CrossRefGoogle Scholar
  29. Ramos, C.G., Querol, X., Dalmora, A.C., Pires, K.C.D.J., Schneider, I.A.H., Oliveira, L.F.S.: Evaluation of the potential of volcanic rock waste from southern brazil as a natural soil fertilizer. J. Clean. Prod. 142, 2700–2706 (2017)CrossRefGoogle Scholar
  30. Shi, W., Xia, M., Wu, L., Wang, F.: Molecular dynamics study of polyether polyamino methylene phosphonates as an inhibitor of anhydrite crystal. Desalination 322, 137–143 (2013)CrossRefGoogle Scholar
  31. Solíscalero, C., Ortegacastro, J., Hernándezlaguna, A., Muñoz, F.: A DFT study of the amadori rearrangement above a phosphatidylethanolamine surface: comparison to reactions in aqueous environment. J. Phys. Chem. C 117, 8299–8309 (2013)CrossRefGoogle Scholar
  32. Spreafico, C., Schiffmann, F., Vandevondele, J.: Structure and mobility of acetic acid at the anatase (101)/acetonitrile interface. J. Phys. Chem. C 118, 6251–6260 (2014)CrossRefGoogle Scholar
  33. Stillings, L.L., Drever, J.I., Brantley, S.L., Sun, Y., Oxburgh, R.: Rates of feldspar dissolution at pH 3–7 with 0–8 Mm oxalic acid. Chem. Geol. 132, 79–89 (1996)CrossRefGoogle Scholar
  34. Stillings, L.L., And, J.I.D., Poulson, S.R.: Oxalate adsorption at a plagioclase (An47) surface and models for ligand-promoted dissolution. Environ. Sci. Technol. 32, 2856–2864 (1998)CrossRefGoogle Scholar
  35. Strawn, D.G., Sparks, D.L.: The use of XAFS to distinguish between inner- and outer-sphere lead adsorption complexes on montmorillonite. J. Colloid. Interf. Sci. 216, 257–269 (1999)CrossRefGoogle Scholar
  36. Strobel, B.W.: Influence of vegetation on low-molecular-weight carboxylic acids in soil solution—a review. Geoderma 99, 169–198 (2001)CrossRefGoogle Scholar
  37. Teklebrhan, R.B., Ge, L., Bhattacharjee, S., Xu, Z., Sjöblom, J.: Initial partition and aggregation of uncharged polyaromatic molecules at the oil–water interface: a molecular dynamics simulation study. J. Phys. Chem. B 118, 1040–1051 (2014)CrossRefGoogle Scholar
  38. Waiman, C.V., Arroyave, J.M., Chen, H., Tan, W., Avena, M.J., Zanini, G.P.: The simultaneous presence of glyphosate and phosphate at the goethite surface as seen by XPS, ATR-FTIR and competitive adsorption isotherms. Colloid. Surf. A 498, 121–127 (2016)CrossRefGoogle Scholar
  39. Weber, K.H., Liu, Q., Tao, F.M.: Theoretical study on stable small clusters of oxalic acid with ammonia and water. J. Phys. Chem. A 118, 1451–1468 (2014)CrossRefGoogle Scholar
  40. Welch, S.A., Ullman, W.J.: Feldspar dissolution in acidic and organic solutions: compositional and pH dependence of dissolution rate. Geochim. Cosmochim. Acta 96, 2939–2948 (1996)CrossRefGoogle Scholar
  41. Xian, Z., Hao, Y., Zhao, Y., Song, S.: Quantitative determination of isomorphous substitutions on clay mineral surfaces through AFM imaging: a case of mica. Colloid. Surf. A 533, 55–60 (2017)CrossRefGoogle Scholar
  42. Xiong, Y., Li, Z., Cao, T.T., Xu, S.M., Yuan, S.L., Sjoblom, J., Xu, Z.H.: Synergistic adsorption of polyaromatic compounds on silica surfaces studied by molecular dynamics simulation. J. Phys. Chem. C 122, 4290–4299 (2018)CrossRefGoogle Scholar
  43. Xu, Y., Liu, Y.L., He, D.D., Liu, G.S.: Adsorption of cationic collectors and water on muscovite (001) surface: a molecular dynamics simulation study. Miner. Eng. 53, 101–107 (2013)CrossRefGoogle Scholar
  44. Xu, L., Tian, J., Wu, H., Deng, W., Yang, Y., Sun, W.: New insights into the oleate flotation response of feldspar particles of different sizes: anisotropic adsorption model. J. Colloid. Interf. Sci. 505, 500–508 (2017)CrossRefGoogle Scholar
  45. Yang, Y., Min, Y., Lococo, J., Jun, Y.S.: Effects of Al/Si ordering on feldspar dissolution: part I. Crystallographic control on the stoichiometry of dissolution reaction. Geochim. Cosmochim. Acta 126, 574–594 (2014)CrossRefGoogle Scholar
  46. Yeh, I.C., Lenhart, J.L., Rinderspacher, B.C.: Molecular dynamics simulations of adsorption of catechol and related phenolic compounds to alumina surfaces. J. Phys. Chem. C 119, 7721–7731 (2015)CrossRefGoogle Scholar
  47. Zhang, L., Jun, Y.S.: Distinctive reactivities at biotite edge and basal planes in the presence of organic ligands: implications for organic-rich geologic Co2 sequestration. Environ. Sci. Technol. 49, 10217–10225 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Chemical Engineering, School of Chemical EngineeringEast China University of Science and TechnologyShanghaiChina
  2. 2.National Engineering Research Center for Integrated Utilization of Salt LakeEast China University of Science and TechnologyShanghaiChina

Personalised recommendations