, Volume 26, Issue 2, pp 189–201 | Cite as

Experimental and theoretical study of adsorptive interactions in diesel fuel desulfurization over Ag/MCM-41 adsorbent

  • Rafael Viana Sales
  • Heloise Oliveira Medeiros de Araújo Moura
  • Sergio Ruschi Bergamachi Silva
  • Miguel Angelo Fonseca de Souza
  • Leila Maria Aguilera Campos
  • Enrique Rodríguez-Castellón
  • Luciene Santos de CarvalhoEmail author


Molecular dynamics simulation performed by the DFT/ONIOM method and X-ray photoemission spectroscopy (XPS) data were employed for studying the adsorbate-adsorbent interaction system in diesel desulfurization over Ag/MCM-41 produced from beach sand silica (MPI). The morphology and structure of the materials were characterized via powder X-ray diffraction (XRD), scanning transmission electron microscopy (STEM) and field emission scanning electron microscopy (FESEM) together with energy dispersive spectrometry (EDS) analysis. The results proved a high dispersion of different Ag nanodomains onto MCM-41 and their chemical interaction with support and sulfur compounds by π-complexation. The best fit of kinetic and equilibrium data to pseudo-second order (R2 > 0.99) and Langmuir models (R2 > 0.98), respectively, demonstrate the occurrence of chemisorptive/catalytic interactions with organosulfur compounds, as seen in the XPS results. Its adsorption capacity (qm = 31.25 mgS/g) was 10 times higher than that obtained for pure MCM-41 and double the qm for Ag/MCM-41(C) adsorbent from commercial silica. The computational modeling approach provided valuable insight towards molecular level understanding of the mechanism in aromatic S-compounds adsorption over functionalized MCM-41 and the role of Ag species in this process.


Adsorptive desulfurization MPI silica Ag/MCM-41 adsorbent π-Complexation DFT/ONIOM 



The authors acknowledge the support provided by the Post-Graduate Programs PPGQ/UFRN and PPGE/UNIFACS. This study was financed by the Coordination for the Improvement of Higher Education Personnel (CAPES - Brazil) - Finance Code 001 and National Council for Scientific and Technological Development (CNPQ - Brazil).

Supplementary material

10450_2019_88_MOESM1_ESM.docx (431 kb)
Supplementary material 1 (DOCX 430 kb)


  1. Andevary, H.H., Akbari, A., Omidkhah, M.: High efficient and selective oxidative desulfurization of diesel fuel using dual-function [Omim]FeCl4 as catalyst/extractant. Fuel Process. Technol. 185, 8–17 (2019). CrossRefGoogle Scholar
  2. Appaturi, J.N., Adam, F.: ImX-MCM-41 (X = Cl, Br and I): active catalysts for the solvent free synthesis of phenyl glycidyl carbonate. Surf. Interfaces 14, 305–313 (2019). CrossRefGoogle Scholar
  3. Battocchio, C., Meneghini, C., Fratoddi, I., Venditti, I., Russo, M.V., Aquilanti, G., Maurizio, C., Bondino, F., Matassa, R., Rossi, M., Mobilio, S., Polzonetti, G.: Silver nanoparticles stabilized with thiols: a close look at the local chemistry and chemical structure. J. Phys. Chem. C 116, 19571–19578 (2012). CrossRefGoogle Scholar
  4. Beck, J.S., Vartulli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T.-W., Olson, D.H., Sheppard, E.W., McCullen, S.B., Higgins, J.B., Schlenkert, J.L.: A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114, 10834–10843 (1992). CrossRefGoogle Scholar
  5. Cao, Y., Dai, W.L., Deng, J.F.: The oxidative dehydrogenation of methanol over a novel Ag/SiO2 catalyst. Appl. Catal. A 158, L27–L34 (1997). CrossRefGoogle Scholar
  6. Câmara, A.B.F., Carvalho, L.S., Morais, C.L.M., Lima, L.A.S., Araújo, H.O.M., Oliveira, F.M., Lima, K.M.G.: MCR-ALS and PLS coupled to NIR/MIR spectroscopies for quantification and identification of adulterant in biodiesel-diesel blends. Fuel 210, 497–506 (2017). CrossRefGoogle Scholar
  7. Carvalho, L.S., Silva, E., Andrade, J.C., Silva, J.A., Urbina, M., Nascimento, P.F., Carvalho, F., Ruiz, J.A.: Low-cost mesoporous adsorbents amines-impregnated for CO2 capture. Adsorption 21, 597–609 (2015). CrossRefGoogle Scholar
  8. Chen, Y., Huang, Z., Zhou, M., Ma, Z., Chen, J., Tang, X.: Single silver adatoms on nanostructured manganese oxide surfaces: boosting oxygen activation for benzene abatement. Environ. Sci. Technol. 51, 2304–2311 (2017). CrossRefPubMedGoogle Scholar
  9. Choi, A.E.S., Roces, S., Dugos, N., Arcega, A., Wan, M.: Adsorptive removal of dibenzothiophene sulfone from fuel oil using clay material adsorbents. J. Clean. Prod. 161, 267–276 (2017). CrossRefGoogle Scholar
  10. Dapprich, S., Komáromi, I., Byun, K.S., Morokuma, K., Frisch, M.J.: A new ONIOM implementation in Gaussian98. Part I. The calculation of energies, gradients and vibrational frequencies and electric field derivatives. J. Mol. Struct. 462, 1–21 (1999). CrossRefGoogle Scholar
  11. Dutov, V.V., Mamontov, G.V., Zaikovskii, V.I., Liotta, L.F., Vodyankina, O.V.: Low-temperature CO oxidation over Ag/SiO2 catalysts: effect of OH/Ag ratio. Appl. Catal. B 221, 598–609 (2018). CrossRefGoogle Scholar
  12. Dutov, V.V., Mamontov, G.V., Zaikovskii, V.I., Vodyankina, O.V.: The effect of support pretreatment on activity of Ag/SiO2 catalysts in low-temperature CO oxidation. Catal. Today 278, 150–156 (2016). CrossRefGoogle Scholar
  13. Etemadi, N., Sepahy, A.A., Mohebali, G., Yazdian, F., Omidi, M.: Enhancement of bio-desulfurization capability of a newly isolated thermophilic bacterium using starch/iron nanoparticles in a controlled system. Int. J. Biol. Macromol. 120, 1801–1809 (2018). CrossRefPubMedGoogle Scholar
  14. Farrokhpour, H., Ghandehari, M., Eskandari, K.: ONIOM DFT study of the adsorption of cytosine on the Au/Ag and Ag/Au bimetallic nanosurfaces: the effect of sublayer. Appl. Surf. Sci. 457, 712–725 (2018). CrossRefGoogle Scholar
  15. Habibi, A., Belaroui, L.S., Bengueddach, A., Galindo, A.L., Díaz, C.I.S., Peña, A.: Adsorption of metronidazole and spiramycin by an Algerian palygorskite. Effect of modification with tin. Microporous Mesoporous Mater. 268, 293–302 (2018). CrossRefGoogle Scholar
  16. Habimana, F., Huo, Y., Jiang, S., Ji, S.: Synthesis of europium metal–organic framework (Eu-MOF) and its performance in adsorptive desulfurization. Adsorption 22, 1147–1155 (2016). CrossRefGoogle Scholar
  17. Hernández-Maldonado, A.J., Yang, F.H., Qi, G., Yang, R.T.: Desulfurization of transportation fuels by π-complexation sorbents: Cu(I)-, Ni(II)-, and Zn(II)-zeolites. Appl. Catal. B 56, 111–126 (2005). CrossRefGoogle Scholar
  18. Hoflund, G.B., Weaver, J.F., Epling, W.S.: AgO XPS spectra. Surf. Sci. Spectra 3, 163–168 (1995). CrossRefGoogle Scholar
  19. Hu, P., Amghouz, Z., Huang, Z., Xu, F., Chen, Y., Tang, X.: Surface-confined atomic silver centers catalyzing formaldehyde oxidation. Environ. Sci. Technol. 49, 2384–2390 (2015). CrossRefPubMedGoogle Scholar
  20. Hua, R., Li, Y., Liu, W., Zheng, J., Wei, H., Wang, J., Lu, X., Kong, H., Xu, G.: Determination of sulfur-containing compounds in diesel oils by comprehensive two-dimensional gas chromatography with a sulfur chemiluminescence detector. J. Chrom. A 1019, 101–109 (2003). CrossRefGoogle Scholar
  21. Huang, Z., Gu, X., Cao, Q., Hu, P., Hao, J., Li, J., Tang, X.: Catalytically active single-atom sites fabricated from silver particles. Angew. Chem. 124, 4274–4279 (2012). CrossRefGoogle Scholar
  22. Izquierdo, R., Rodríguez, L.J., Añez, R., Sierraalta, A.: Direct catalytic decomposition of NO with Cu-ZSM-5: A DFT-ONIOM study. J. Mol. Catal. A 348, 55–62 (2011). CrossRefGoogle Scholar
  23. Kowalczyk, A., Borcuch, A., Michalik, M., Rutkowska, M., Gil, B., Sojka, Z., Indyka, P., Chmielarz, L.: MCM-41 modified with transition metals by template ion-exchange method as catalysts for selective catalytic oxidation of ammonia to dinitrogen. Microporous Mesoporous Mater. 240, 9–21 (2017). CrossRefGoogle Scholar
  24. Li, S.-W., Gao, R.-M., Zhao, J.-S.: Different supports of modified heteropolyacid for ultra-deep oxidative desulfurization: a newly easy shaped catalyst and the DFT cluster model study. Fuel 237, 840–850 (2019). CrossRefGoogle Scholar
  25. Losurdo, M., Bergmair, I., Dastmalchi, B., Kim, T.-H., Giangregroio, M.M., Jiao, W., Bianco, G.V., Brown, A.S., Hingerl, K., Bruno, G.: Graphene as an electron shuttle for silver deoxidation: removing a key barrier to plasmonics and metamaterials for SERS in the visible. Adv. Funct. Mater. 24, 1864–1878 (2014). CrossRefGoogle Scholar
  26. Ma, X., Ouyang, F.: Adsorption properties of biomass-based activated carbon prepared with spent coffee grounds and pomelo skin by phosphoric acid activation. Appl. Surf. Sci. 268, 566–570 (2013). CrossRefGoogle Scholar
  27. Madey, T.E., Wagner, C.D., Joshi, A.: Surface characterization of catalysts using eléctron spectroscopies: results of a round-robin sponsored by ASTM committee D-32 on catalysts. J. Electron Spectros. Relat. Phenom. 10, 359–388 (1977). CrossRefGoogle Scholar
  28. Meng, C., Fang, Y., Jin, L., Hu, H.: Deep desulfurization of model gasoline by selective adsorption on Ag+/Al-MSU-S. Catal. Today 149, 138–142 (2010). CrossRefGoogle Scholar
  29. Morpurgo, S.: A DFT study on Cu(I) coordination in Cu-ZSM-5: effects of the functional choice and tuning of the ONIOM approach. J. Comput. Chem. 36, 660–669 (2015). CrossRefPubMedGoogle Scholar
  30. Moura, H.O.M.A., Câmara, A.B.F., Santos, M.C.D., Morais, C.L.M., Lima, L.A.S., Lima, K.M.G., Carvalho, L.S.: Advances in chemometric control of commercial diesel adulteration by kerosene using IR spectroscopy. Anal. Bioanal. Chem. 5, 2 (2019). CrossRefGoogle Scholar
  31. Muzic, M., Sertic-Bionda, K., Gomzi, Z., Podolski, S., Telen, S.: Study of diesel fuel desulfurization by adsorption. Chem. Eng. Res. Des. 88, 487–495 (2010). CrossRefGoogle Scholar
  32. Padin, J., Yang, R.T.: New sorbents for olefin/paraffin separations by adsorption via π-complexation: synthesis and effects of substrates. Chem. Eng. Sci. 55, 2607–2616 (2000). CrossRefGoogle Scholar
  33. Pham, X.N., Nguyen, B.M., Thi, H.T., Doan, H.V.: Synthesis of Ag-AgBr/Al-MCM-41 nanocomposite and its application in photocatalytic oxidative desulfurization of dibenzothiophene. Adv. Powder Technol. 29, 1827–1837 (2018). CrossRefGoogle Scholar
  34. Qin, J., Li, B., Zhang, W., Lv, W., Han, C., Liu, J.: Synthesis, characterization and catalytic performance of well-ordered mesoporous Ni-MCM-41 with high nickel contente. Microporous Mesoporous Mater. 208, 181–187 (2015). CrossRefGoogle Scholar
  35. Rajabi, M., Mirza, B., Mahanpoor, K., Mirjalili, M., Najafi, F., Moradi, O., Sadegh, H., Shahryari, R., Asif, M., Tyagi, I., Agarwal, S., Gupta, V.K.: Adsorption of malachite green from aqueous solution by carboxylate group functionalized multi-walled carbon nanotubes: Determination of equilibrium and kinetics parameters. J. Ind. Eng. Chem. 34, 130–138 (2016). CrossRefGoogle Scholar
  36. Saleh, T.A., Adio, S.O., Asif, M., Dafalla, H.: Statistical analysis of phenols adsorption on diethylenetriaminemodified activated carbono. J. Clean. Prod. 182, 960–968 (2018). CrossRefGoogle Scholar
  37. Santos, V.P., Pereira, M.F.R., Órfão, J.J.M., Figueiredo, J.L.: The role of lattice oxygen on the activity of manganese oxides towards the oxidation of volatile organic compounds. Appl. Catal. B 99, 353–363 (2010). CrossRefGoogle Scholar
  38. Shen, S., Chen, J., Koodali, R.T., Hu, Y., Xiao, Q., Zhou, J., Wang, X., Guo, L.: Activation of MCM-41 mesoporous silica by transition-metal incorporation for photocatalytic hydrogen production. Appl. Catal. B 150–151, 138–146 (2014). CrossRefGoogle Scholar
  39. Sikarwar, P., Kumar, U.K.A., Gosu, V., Subbaramaiah, V.: Catalytic oxidative desulfurization of DBT using green catalyst (Mo/MCM-41) derived from coal fly ash. J. Environ. Chem. Eng. 6, 1736–1744 (2018). CrossRefGoogle Scholar
  40. Siriworarat, K., Deerattrakul, V., Dittanet, P., Kongkachuichay, P.: Production of methanol from carbon dioxide using palladium-copperzinc loaded on MCM-41: comparison of catalysts synthesized from flame spray pyrolysis and sol-gel method using silica source from rice husk ash. J. Clean. Prod. 142, 1234–1243 (2017). CrossRefGoogle Scholar
  41. Sohrabnezhad, Sh, Jafarzadeh, A., Pourahmad, A.: Synthesis and characterization of MCM-41 ropes. Mater. Lett. 212, 16–19 (2018). CrossRefGoogle Scholar
  42. Song, H., Chang, Y., Song, H.: Deep adsorptive desulfurization over Cu, Ce bimetal ion-exchanged Y-typed molecule sieve. Adsorption 22, 139–150 (2016). CrossRefGoogle Scholar
  43. Subhan, F., Aslam, S., Yan, Z., Ikram, M., Rehman, S.: Enhanced desulfurization characteristics of Cu-KIT-6 for thiophene. Microporous Mesoporous Mater. 199, 108–116 (2014). CrossRefGoogle Scholar
  44. Subhan, F., Aslam, S., Yan, Z., Zhen, L., Ikram, M., Ullah, R., Etim, U.J., Ahmad, A.: Ammonia assisted functionalization of cuprous oxide within confined spaces of SBA-15 for adsorptive desulfurization. Chem. Eng. J. 339, 557–565 (2018). CrossRefGoogle Scholar
  45. Tang, H., Li, W., Zhang, T., Li, Q., Xing, J., Liu, H.: Improvement in diesel desulfurization capacity by equilibrium isotherms analysis. Sep. Purif. Technol. 78, 352–356 (2011). CrossRefGoogle Scholar
  46. Wang, J., Zhang, L., Sun, Y., Jiang, B., Chen, Y., Gao, X., Yang, H.: Deep catalytic oxidative desulfurization of fuels by novel Lewis acidic ionic liquids. Fuel Process. Technol. 177, 81–88 (2018). CrossRefGoogle Scholar
  47. Yang, D., Yang, S., Jiang, Z., Yu, S., Zhang, J., Pan, F., Cao, X., Wang, B., Yang, J.: Polydimethyl siloxane–graphene nanosheets hybrid membranes with enhanced pervaporative desulfurization performance. J. Membr. Sci. 487, 152–161 (2015). CrossRefGoogle Scholar
  48. Yang, R.T.: Adsorbents: Fundamentals and Applications. Wiley, Hoboken (2003)CrossRefGoogle Scholar
  49. Yu, H., Xue, X., Huang, D.: Synthesis of mesoporous silica materials (MCM-41) from iron ore tailings. Mater. Res. Bull. 44, 2112–2115 (2009). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Rafael Viana Sales
    • 1
  • Heloise Oliveira Medeiros de Araújo Moura
    • 1
  • Sergio Ruschi Bergamachi Silva
    • 1
  • Miguel Angelo Fonseca de Souza
    • 1
  • Leila Maria Aguilera Campos
    • 2
  • Enrique Rodríguez-Castellón
    • 3
  • Luciene Santos de Carvalho
    • 1
    Email author
  1. 1.Institute of Chemistry, Federal University of Rio Grande do Norte, Energetic Technologies Research GroupNatalBrazil
  2. 2.Chemical Engineering Post-Graduate ProgramSalvador University (UNIFACS)SalvadorBrazil
  3. 3.Dpto. de Química Inorgánica, Cristalografía y Mineralogía, Facultad de CienciasUniversidad de MálagaMálagaSpain

Personalised recommendations