Advertisement

Adsorption

pp 1–13 | Cite as

Heat and mass transfer in activated carbon composites with artificial macro pores for heat pump applications

  • Kraft O.Email author
  • Stripf M.
  • Hesse U.
Article
  • 28 Downloads

Abstract

This paper presents a new simulation model for the heat and mass transfer in activated carbon compounds with new kind of artificial pores using methanol as a working fluid. The artificial pores are generated by blending polymer fibers to the activated carbon and binder mixture. In a subsequent sintering process, the polymer fibers are gasified, leaving additional pores that increase the overall mass transfer. Three measuring techniques are developed to determine the model parameters, including temperature and load dependent thermal conductivity, pressure and temperature dependent macroporous diffusivity and adsorption kinetics.

Keywords

Adsorption Heat pump Activated carbon Artificial macro pores 

Notes

Acknowledgements

This research is supported by the German Federal Ministry of Education and Research, Research Grant (03FH023PX4).

References

  1. Aristov, Y.: Adsorptiv transformation and storage of renewable heat: review of current trends in adsorption dynamics. Renew. Energy 110, 105–114 (2017)CrossRefGoogle Scholar
  2. Aristov, Y., Restuccia, G., Cacciola, G., Parmon, V.: A family of new working materials for solid sorption air conditioning systems. Appl. Therm. Eng. 22(2), 191–204 (2002)CrossRefGoogle Scholar
  3. Aristov, Y., Dawoud, B., Glaznev, I., Elyas, A.: A new methodology of studying the dynamics of water sorption/desorption under real operating conditions of adsorption heat pumps: experiment. Int. J. Heat Mass Transf. 51(19–20), 4966–4972 (2008)CrossRefGoogle Scholar
  4. Burk, R., Wolff, T., Angermann, H.H., Thiele, S., Schiehlen, T., Zwittig, E., Schroth, H., Felber, S., Brunner, S.: Adsorber and module for a heat pump. DE102011079581A1 (2013)Google Scholar
  5. Critoph, R.: Activated carbon adsorption cycles for refrigeration and heat pumping. Carbon 27(1), 63–70 (1989)CrossRefGoogle Scholar
  6. Critoph, R., Vogel, R.: Possible adsorption pairs for use in solar cooling. Ambient Energy 7, 183–190 (1986)CrossRefGoogle Scholar
  7. Ghanbarian, B., Daigle, H.: Thermal conductivity in porous media: percolation-based effective medium approximation. Water Resour. Res. 52, 295–314 (2016)CrossRefGoogle Scholar
  8. Glückauf, E.: Theory of chromatography part 10.—formulae for diffusion into spheres and their application to chromatography. Trans. Faraday Soc. 55, 1540–1551 (1955)Google Scholar
  9. Henninger, S., Schicktanz, M., Hügenell, P., Sievers, H., Henning, H.M.: Evaluation of methanol adsorption on activated carbons for thermally driven chillers part I: thermophysical characterisation. Int. J. Refrig. 35(3), 543–553 (2012)CrossRefGoogle Scholar
  10. Korolyuk, O., Krivchikov, A., Sharapova, I., Romantsova, O.: Heat transfer in solid methyl alcohol. Low Temp. Phys. 35(4), 380–384 (2009)CrossRefGoogle Scholar
  11. Kraft, O., Gaiser, J., Stripf, M.: Determination of load dependent thermal conductivity of porous adsorbents. In: Proceedings of the COMSOL Conference Munich (2016)Google Scholar
  12. Meunier, F.: Theoretical performance of solid adsorbent cascading cycles using zeolite-water and active carbon-methanol pairs: four cases studies. Heat Recovery Syst. CHP 6(6), 491–498 (1988)CrossRefGoogle Scholar
  13. Pan, Q., Wang, R., Wang, L.: Comparison of different kinds of heat recoveries applied in adsorption refrigeration system. Int. J. Refrig. 55, 37–48 (2015)CrossRefGoogle Scholar
  14. Srivastava, N., Eames, I.: A review of adsorbents and adsorbates in solid-vapour adsorption heat pumps. Appl. Therm. Eng. 18(9), 707–714 (1998)CrossRefGoogle Scholar
  15. Wang, L.: Experimental study of a solified activated carbon-methanol adsorption ice maker. Appl. Therm. Eng. 23(12), 1453–1462 (2003)CrossRefGoogle Scholar
  16. Wang, L., Wu, J., Wang, R., Xu, Y., Wang, S., Li, X.: Study of the performance of activated carbon-methanol adsorption system concerning heat and mass transfer. Appl. Therm. Eng. 23, 1605–1617 (2003)CrossRefGoogle Scholar
  17. Wang, L., Wang, R., Oliveira, R.: A review on adsorption working pairs for refrigeration. Renew. Sustain. Energy Rev. 13(3), 518–534 (2009)CrossRefGoogle Scholar
  18. Wang, R.: Performance improvement of adsorption cooling by heat and mass recovery operation. Int. J. Refrig. 24(7), 602–611 (2001)CrossRefGoogle Scholar
  19. Wicke, E., Kallenbach, R.: Die Oberfächendiffusion von Kohlendioxyd in aktiven Kohlen. Colloid Polym. Sci. 97(2), 135–151 (1941)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Karlsruhe University of Applied SciencesKarlsruheGermany
  2. 2.Institute of Power EngineeringTechnical University DresdenDresdenGermany

Personalised recommendations