pp 1–12 | Cite as

Phenyl siloxane hybrid xerogels: structure and porous texture

  • P. Moriones
  • J. C. EcheverriaEmail author
  • J. B. Parra
  • J. J. GarridoEmail author


The aim of this research is to investigate the effect of phenyltriethoxysilane (PhTEOS) and tetraethoxysilane (TEOS) molar ratios as silicon precursors on the structure and porous texture of xerogels. We have prepared phenyl-silane hybrid xerogels from mixtures of PhTEOS and TEOS at pH 10 and 333 K, using ethanol as a solvent. Characterization techniques include 29Si NMR, FTIR, XRD, FE-SEM, HRTEM, TGA-DSC, helium density, and gas adsorption (N2 at 77 K and CO2 at 273 K). In order to assess the contribution of the quadrupolar moment of N2 and CO2 in the adsorption we obtained the adsorption–desorption isotherm of Ar at 87.3 K for the xerogel synthesized from 50% PhTEOS. The morphology of xerogels changed from aggregates of spherical particles for 20% PhTEOS to lamellae for samples obtained with PhTEOS percentages equal or larger that 60%. The incorporation of phenyl groups into the xerogel matrix caused an increase in the spacing bond between silicon atoms and led to an intramolecular reaction and the formation of lamellar domains. Increasing the PhTEOS molar ratio in the mixture of silicon precursors produced hybrid xerogels with lower specific surface area, pore volume and characteristic energy. The similarity between the isotherms of N2 at 77 K and Ar at 87.3 K indicates that the main retention mechanism is physisorption and that the variation in the surface chemistry with the incorporation of phenyl groups doesn’t inhibit the retention of N2.


Sol–gel Phenyltriethoxysilane Hybrid xerogels Porous texture 



This work was backed by the “Ministerio de Ciencia y Tecnología” (Grant No. CTQ2009-07993) and by the “Ministerio de Economía, Industria y Competitividad” (Grant No. MAT2016-78155-C2-2-R). Paula Moriones is grateful to the “Departamento de Industria y Tecnología, Comercio y Trabajo” of the Navarre Government for the fellowships granted (Ref. Number 175/01/08 and 269/01/08, respectively). The authors thank the “Servicios Científico-Técnicos de Investigación” at the University of Cantabria (Spain) for TGA-DSC analysis.

Supplementary material

10450_2019_75_MOESM1_ESM.docx (290 kb)
Supplementary material 1 (DOCX 290 KB)
10450_2019_75_MOESM2_ESM.docx (13 kb)
Supplementary material 2 (DOCX 13 KB)


  1. Alauzun, J., Mehdi, A., Mouawia, R., Reyé, C., Corriu, R.: Synthesis of new lamellar materials by self-assembly and coordination chemistry in the solids. J. Sol-Gel. Sci. Technol. 46, 383–392 (2008)CrossRefGoogle Scholar
  2. Al-Oweini, R., El-Rassy, H.: Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R ‘’Si(OR ‘)3 precursors. J. Mol. Struct. 919, 140–145 (2009)CrossRefGoogle Scholar
  3. Alsolmy, E., Abdelwahab, W.M., Patonay, G.: A comparative study of fluorescein Isothiocyanate-encapsulated silica nanoparticles prepared in seven different routes for developing fingerprints on non-porous surfaces. J. Fluoresc 28, 1049–1058 (2018)CrossRefGoogle Scholar
  4. Bellamy, L.J.: The Infra-Red Spectra of Complex Molecules. Springer, New York (1975)CrossRefGoogle Scholar
  5. Brown, J.F., Vogt, L.H., Prescott, P.I.: Preparation and characterization of lower equilibrated phenylsilsesquioxanes. J. Am. Chem. Soc. 86, 1120–1125 (1964)CrossRefGoogle Scholar
  6. CazorlaAmoros, D., AlcanizMonge, J., LinaresSolano, A.: Characterization of activated carbon fibers by CO2 adsorption. Langmuir 12, 2820–2824 (1996)CrossRefGoogle Scholar
  7. Celzard, A., Marêché, J.F.: Applications of the sol-gel process using well-tested recipes. J. Chem. Educ. 79, 854–859 (2002)CrossRefGoogle Scholar
  8. Chemtob, A., Ni, L.L., Croutxe-Barghorn, C., Boury, B.: Ordered hybrids from template-free organosilane self-assembly. Chem. Eur. J. 20, 1790–1806 (2014)CrossRefGoogle Scholar
  9. Choi, S.-S., Lee, A., Lee, H., Baek, K.-Y., Choi, D., Hwang, S.: Synthesis and characterization of ladder-like structured polysilsesquioxane with carbazole group. Macromol. Res. 19, 261–265 (2011)CrossRefGoogle Scholar
  10. Colthup, N.B., Daly, C.M., Wiberley, S.E.: Introduction to Infrared and Raman Spectroscopy. Academic Press, New York (1990)Google Scholar
  11. Dong, H.J., Brook, M.A., Brennan, J.D.: A new route to monolithic methylsilsesquioxanes: gelation behavior of methyltrimethoxysilane and morphology of resulting methylsilsesquioxanes under one-step and two-step processing. Chem. Mater. 17, 2807–2816 (2005)CrossRefGoogle Scholar
  12. Echeverria, J.C., Calleja, I., Moriones, P., Garrido, J.J.: Fiber optic sensors based on hybrid phenyl-silica xerogel films to detect n-hexane: determination of the isosteric enthalpy of adsorption. Beilstein J. Nanotech. 8, 475–484 (2017)CrossRefGoogle Scholar
  13. Fasce, D.P., Williams, R.J.J., Mechin, F., Pascault, J.P., Llauro, M.F., Petiaud, R.: Synthesis and characterization of polyhedral silsesquioxanes bearing bulky functionalized substituents. Macromolecules 32, 4757–4763 (1999)CrossRefGoogle Scholar
  14. Fernandes, J., Fernandes, A.C., Echeverria, J.C., Moriones, P., Garrido, J.J., Pires, J.: Adsorption of gases and vapours in silica based xerogels. Colloids Surf. Physicochem. Eng. Asp. 561, 128–135 (2019)CrossRefGoogle Scholar
  15. Fidalgo, A., Ilharco, L.M.: The defect structure of sol-gel-derived silica/polytetrahydrofuran hybrid films by FTIR. J. Non-Cryst. Solids 283, 144–154 (2001)CrossRefGoogle Scholar
  16. Fidalgo, A., Ilharco, L.M.: Correlation between physical properties and structure of silica xerogels. J. Non-Cryst. Solids 347, 128–137 (2004)CrossRefGoogle Scholar
  17. Fina, A., Tabuani, D., Carniato, F., Frache, A., Boccaleri, E., Camino, G.: Polyhedral oligomeric silsesquioxanes (POSS) thermal degradation. Thermochim. Acta 440, 36–42 (2006)CrossRefGoogle Scholar
  18. Garcia-Cerda, L.A., Mendoza-Gonzalez, O., Perez-Robles, J.F., Gonzalez-Hernandez, J.: Structural characterization and properties of colloidal silica coatings on copper substrates. Mater. Lett. 56, 450–453 (2002)CrossRefGoogle Scholar
  19. Garrido, J., Linares-Solano, A., Martin-Martinez, J.M., Molina-Sabio, M., Rodriguez-Reinoso, F., Torregrosa, R.: Use of N2 vs CO2 in the characterization of activated carbons. Langmuir 3, 76–81 (1987)CrossRefGoogle Scholar
  20. Innocenzi, P.: Infrared spectroscopy of sol-gel derived silica-based films: a spectra-microstructure overview. J. Non-Cryst. Solids 316, 309–319 (2003)CrossRefGoogle Scholar
  21. Innocenzi, P., Falcaro, P., Grosso, D., Babonneau, F.: Order-disorder transitions and evolution of silica structure in self-assembled mesostructured silica films studied through FTIR spectroscopy. J. Phys. Chem. B 107, 4711–4717 (2003)CrossRefGoogle Scholar
  22. Jeong, S., Moon, J.: Fabrication of inorganic-organic hybrid films for optical waveguide. J. Non-Cryst. Solids 351, 3530–3535 (2005)CrossRefGoogle Scholar
  23. Kamiya, K., Dohkai, T., Wada, M., Hashimoto, T., Matsuoka, J., Nasu, H.: X-ray diffraction of silica gels made by sol-gel method under different conditions. J. Non-Cryst. Solids 240, 202–211 (1998)CrossRefGoogle Scholar
  24. Koller, H., Ulke, S.: Microheterogeneity in phenyl group modified inorganic/organic hybrid gels after aerosol drying or slow solvent evaporation. Solid State Nucl. Magn. Reson. 39, 142–150 (2011)CrossRefGoogle Scholar
  25. Lana, S.L.B., Seddon, A.B.: X-ray diffraction studies of sol-gel derived ORMOSILs based on combinations of tetramethoxysilane and trimethoxysilane. J. Sol-Gel. Sci. Technol. 13, 461–466 (1998)CrossRefGoogle Scholar
  26. Levy, D., Pardo, R., Zayat, M.: Photostability of a photochromic naphthopyran dye in different sol-gel prepared ormosil coatings. J. Sol-Gel. Sci. Technol. 40, 365–370 (2006)CrossRefGoogle Scholar
  27. Li, Y.-S., Wang, Y., Ceesay, S.: Vibrational spectra of phenyltriethoxysilane, phenyltrimethoxysilane and their sol-gels. Spectrochim. Acta A 71, 1819–1824 (2009)CrossRefGoogle Scholar
  28. Lin, W.S., Zheng, J.X., Zhuo, J.N., Chen, H.X., Zhang, X.X.: Characterization of sol-gel ORMOSIL antireflective coatings from phenyltriethoxysilane and tetraethoxysilane: microstructure control and application. Surf. Coat. Tech. 345, 177–182 (2018)CrossRefGoogle Scholar
  29. Lowell, S., Shields, J.E., Thomas, M.A., Thommes, M.: Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. Springer, Dordrecht (2006)Google Scholar
  30. Loy, D.A.: Sol-Gel processing of hybrid organic-inorganic materials based on polysisesquioxanes. In: Kickelbick, G. (ed.) Hybrid Materials, pp. 225–254. Wiley-VCH Verlag, Weinheim (2007)Google Scholar
  31. Loy, D.A., Baugher, B.M., Baugher, C.R., Schneider, D.A., Rahimian, K.: Substituent effects on the sol-gel chemistry of organotrialkoxysilanes. Chem. Mater. 12, 3624–3632 (2000)CrossRefGoogle Scholar
  32. Madejova, J., Komadel, P.: Baseline studies of the clay minerals society source clays: infrared methods. Clays Clay Miner. 49, 410–432 (2001)CrossRefGoogle Scholar
  33. Moriones, P., Rios, X., Echeverria, J.C., Garrido, J.J., Pires, J., Pinto, M.: Hybrid organic-inorganic phenyl stationary phases for the gas separation of organic binary mixtures. Colloids Surf. Physicochem. Eng. Asp. 389, 69–75 (2011)CrossRefGoogle Scholar
  34. NIS Elements: Advanced Solutions for Your Imaging World. Nikon Corporation, Amstelveen (2010)Google Scholar
  35. Olejniczak, Z., Leczka, M., Cholewa-Kowalska, K., Wojtach, K., Rokita, M., Mozgawa, W.: 29Si MAS NMR and FTIR study of inorganic-organic hybrid gels. J. Mol. Struct. 744–747, 465–471 (2005)CrossRefGoogle Scholar
  36. Orel, B., Jese, R., Vilcnik, A., Stangar, U.L.: Hydrolysis and solvolysis of methyltriethoxysilane catalyzed with HCl or trifluoroacetic acid: IR spectroscopic and surface energy studies. J. Sol-Gel. Sci. Technol. 34, 251–265 (2005)CrossRefGoogle Scholar
  37. Ou, D.L., Seddon, A.B.: Near- and mid-infrared spectroscopy of sol-gel derived ormosils: vinyl and phenyl silicates. J. Non-Cryst. Solids 210, 187–203 (1997)CrossRefGoogle Scholar
  38. Oubaha, M., Etienne, P., Calas, S., Sempere, R., Nedelec, J.M., Moreau, Y.: Spectroscopic characterization of sol-gel organo-siloxane materials synthesized from aliphatic and aromatic alcoxysilanes. J. Non-Cryst. Solids 351, 2122–2128 (2005)CrossRefGoogle Scholar
  39. Pardo, R., Zayat, M., Levy, D.: Photostability of a photochromic naphthopyran dye in different sol-gel prepared ormosil coatings. J. Sol-Gel. Sci. Technol. 40, 365–370 (2006)CrossRefGoogle Scholar
  40. Pardo, R., Zayat, M., Levy, D.: Photochromic organic-inorganic hybrid materials. Chem. Soc. Rev. 40, 672–687 (2011)CrossRefGoogle Scholar
  41. Park, E.S., Ro, H.W., Nguyen, C.V., Jaffe, R.L., Yoon, D.Y.: Infrared spectroscopy study of microstructures of poly(silsesquioxane)s. Chem. Mater. 20, 1548–1554 (2008)CrossRefGoogle Scholar
  42. Piazza, R.: Soft matter. The stuff dreams are made of. Springer, Dordrecht (2010)Google Scholar
  43. Qin, Y., Ren, H., Zhu, F., Zhang, L., Shang, C., Wei, Z., Luo, M.: Preparation of POSS-based organic-inorganic hybrid mesoporous materials networks through Schiff base chemistry. Eur. Polym. J. 47, 853–860 (2011)CrossRefGoogle Scholar
  44. Rios, X., Moriones, P., Echeverría, J.C., Luquin, A., Laguna, M., Garrido, J.J.: Characterisation of hybrid xerogels synthesised in acid media using methyltriethoxysilane (MTEOS) and tetraethoxysilane (TEOS) as precursors. Adsorption 17, 583–593 (2011)CrossRefGoogle Scholar
  45. Rouquerol, F., Rouquerol, J., Sing, K.: Adsorption by Powders and Porous Solids. Academic Press, San Diego (1999)Google Scholar
  46. Shimojima, A., Sugahara, Y., Kuroda, K.: Synthesis of oriented inorganic-organic nanocomposite films from alkyltrialkoxysilane-tetraalkoxysilane mixtures. J. Am. Chem. Soc. 120, 4528–4529 (1998)CrossRefGoogle Scholar
  47. Shimojima, A., Liu, Z., Ohsuna, T., Terasaki, O., Kuroda, K.: Self-assembly of designed oligomeric siloxanes with alkyl chains into silica-based hybrid mesostructures. J. Am. Chem. Soc. 127, 14108–14116 (2005)CrossRefGoogle Scholar
  48. Stöber, W., Fink, A., Bohn, E.: Controlled growth of monodisperse silica spheres in micron size range. J. Colloid Interface Sci. 26, 62–69 (1968)CrossRefGoogle Scholar
  49. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051–1069 (2015)CrossRefGoogle Scholar
  50. Vogt, L.H., Brown, J.F.: Crystalline methylsilsesquioxanes. Inorg. Chem. 2, 189–192 (1963)CrossRefGoogle Scholar
  51. Yoshino, H., Kamiya, K., Nasu, H.: IR study on the structural evolution of sol-gel derived SiO2 gels in the early stage of conversion to glasses. J. Non-Cryst. Solids 126, 68–78 (1990)CrossRefGoogle Scholar
  52. Zhang, X., Xie, P., Shen, Z., Jiang, J., Zhu, C., Li, H., Zhang, T., Han, C.C., Wan, L., Yan, S., Zhang, R.: Confined synthesis of a cis-isotactic ladder polysilsesquioxane by using a π-stacking and H-bonding superstructure. Angew. Chem. Int. Ed. 45, 3112–3116 (2006)CrossRefGoogle Scholar
  53. Zhang, Z.X., Hao, J.K., Xie, P., Zhang, X.J., Han, C.C., Zhang, R.B.: A well-defined ladder polyphenylsilsesquioxane (Ph-LPSQ) synthesized via a new three-step approach: monomer self-organization-lyophilization-surface-confined polycondensation. Chem. Mater. 20, 1322–1330 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Ciencias, Edif. Los AcebosUniversidad Pública de NavarraPamplonaSpain
  2. 2.Institute for Advanced Materials, Edif. Jerónimo de AyanzUniversidad Pública de NavarraPamplonaSpain
  3. 3.Instituto Nacional del Carbon, CSICOviedoSpain

Personalised recommendations