, Volume 25, Issue 3, pp 649–660 | Cite as

Nickel and cobalt adsorption on hydroxyapatite: a study for the de-metalation of electronic industrial wastewaters

  • Michele Ferri
  • Sebastiano Campisi
  • Antonella GervasiniEmail author


In the present study, the Ni(II) and Co(II) adsorption efficiency and selectivity, as well adsorption mechanisms on a stoichiometric hydroxyapatite (HAP) surface have been investigated. Characterization studies (N2 adsorption/desorption and X-ray powder diffraction (XRPD) analyses) and adsorption tests under various operative conditions provided detailed information about the use of HAP in the de-metalation of wastewaters containing Ni and Co as polluted metal species. The sorption capacity of HAP has been evaluated by static batch adsorption tests varying initial concentration of Ni(II) and Co(II) species (from ca. 0.25 to 4.3 mM), contact time (from 15 min to 24 h), and pH (from 4 to 9) operative parameters. Proposed mechanisms of adsorption of Ni(II) and Co(II) on HAP surface are ion-exchange and surface complexation; a partial contribution of chemical precipitation from bulk solution should be considered at pH 9. In addition, adsorption isotherms of Ni(II) and Co(II) on HAP have been collected at 30 °C and pH 4 and modeled by employing different equations. The maximum sorption capacities have been quantified as 0.317 mmol \({\text{g}}_{{{\text{HAP}}}}^{{ - 1}}\) (18.6 mg \({\text{g}}_{{{\text{HAP}}}}^{{ - 1}}\)) and 0.382 mmol \({\text{g}}_{{{\text{HAP}}}}^{{ - 1}}\) (22.5 mg \({\text{g}}_{{{\text{HAP}}}}^{{ - 1}}\)) for Ni(II) and Co(II), respectively. Selectivity to Co and Ni in the adsorption process on HAP has also been investigated; HAP has higher affinity towards Co than Ni species (Co:Ni = 2.5:1, molar ratio).


Hydroxyapatite Co and Ni polluting species Adsorption isotherms Surface complexation 



Funding was provided by INAIL (Grant No. bando INAIL BRIC 2016 – ID13.)

Supplementary material

10450_2019_66_MOESM1_ESM.docx (369 kb)
Supplementary material 1 (DOCX 369 KB)


  1. Anoop Krishnan, K., Sreejalekshmi, K.G., Baiju, R.S.: Nickel(II) adsorption onto biomass based activated carbon obtained from sugarcane bagasse pith. Bioresour. Technol. 102, 10239–10247 (2011). CrossRefGoogle Scholar
  2. Ayawei, N., Ebelegi, A.N., Wankasi, D.: Modelling and interpretation of adsorption isotherms. J. Chem. 2017, (2017). Google Scholar
  3. Babel, S., Kurniawan, T.A.: Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J. Hazard. Mater. 97, 219–243 (2003). CrossRefGoogle Scholar
  4. Bailey, S.E., Olin, T.J., Bricka, M., Adrian, R.D.: 2 USAE Waterways Experiment Station, 3909 Halls Ferry Rd. 33, (1999)Google Scholar
  5. Benzaoui, T., Selatnia, A., Djabali, D.: Adsorption of copper (II) ions from aqueous solution using bottom ash of expired drugs incineration. Adsorpt. Sci. Technol. 36, 114–129 (2018). CrossRefGoogle Scholar
  6. Campisi, S., Castellano, C., Gervasini, A.: Tailoring the structural and morphological properties of hydroxyapatite materials to enhance the capture efficiency towards copper(II) and lead(II) ions. New J. Chem. 42, 4520–4530 (2018). CrossRefGoogle Scholar
  7. Campisi, S., Galloni, M.G., Bossola, F., Gervasini, A.: Comparative performance of copper and iron functionalized hydroxyapatite catalysts in NH3 -SCR. Catal. Commun. 123, 79–85 (2019). CrossRefGoogle Scholar
  8. Chaney, R.L., et al.: Method for phytomining of nickel, cobalt and other metals from soil. United States Pat. 711, 784 (1998). Google Scholar
  9. Chen, C.H., Liu, J., Stoll, M.E., Henriksen, G., Vissers, D.R., Amine, K.: Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries. J. Power Sources. 128, 278–285 (2004). CrossRefGoogle Scholar
  10. Chen, S.B., Ma, Y.B., Chen, L., Xian, K.: Adsorption of aqueous Cd2+, Pb2+, Cu2+ ions by nano-hydroxyapatite: single-and multi-metal competitive adsorption study. Geochem. J. 44, 233–239 (2010). CrossRefGoogle Scholar
  11. Chmielewskà-Horvthovà, E., Lesny, J.: Adsorption of cobalt on some natural zeolites occurring in CSFR. J. Radioanal. Nucl. Chem., Lett. 166, 13 (1992). CrossRefGoogle Scholar
  12. Corami, A., Mignardi, S., Ferrini, V.: Cadmium removal from single- and multi-metal (Cd + Pb + Zn + Cu) solutions by sorption on hydroxyapatite. J. Colloid Interface Sci. 317, 402–408 (2008). CrossRefGoogle Scholar
  13. Corbala-Robles, L., Volcke, E.I.P., Samijn, A., Ronsse, F., Pieters, J.G.: Effect of foam on temperature prediction and heat recovery potential from biological wastewater treatment. Water Res. 95, 340–347 (2016). CrossRefGoogle Scholar
  14. Dean, J.G., Bosqui, F.L., Lanouette, K.H.: Removing heavy metals from waste water. Environ. Sci. Technol. 6, 518–522 (1972). CrossRefGoogle Scholar
  15. Ferri, M., Campisi, S., Scavini, M., Evangelisti, C., Carniti, P., Gervasini, A.: In-depth study of the mechanism of heavy metal trapping on the surface of hydroxyapatite. Appl. Surf. Sci. 475, 397–409 (2019)CrossRefGoogle Scholar
  16. Fetcenko, M.A., Ovshinsky, S.R., Reichman, B., Young, K., Fierro, C., Koch, J., Zallen, A., Mays, W., Ouchi, T.: Recent advances in NiMH battery technology. J. Power Sources. 165, 544–551 (2007). CrossRefGoogle Scholar
  17. Fihri, A., Len, C., Varma, R.S., Solhy, A.: Hydroxyapatite: a review of syntheses, structure and applications in heterogeneous catalysis. Coord. Chem. Rev. 347, 48–76 (2017). CrossRefGoogle Scholar
  18. Flores-Cano, J.V., Leyva-Ramos, R., Carrasco-Marin, F., Aragòn-Pina, A., Salazar-Rabago, J.J., Leyva-Ramos, S.: Adsorption mechanism of Chromium(III) from water solution on bone char: effect of operating conditions. Adsorption. 22, 297–308 (2016). CrossRefGoogle Scholar
  19. Gupta, N., Kushwaha, A.K., Chattopadhyaya, M.C.: Adsorptive removal of Pb2+, Co2+ and Ni2+ by hydroxyapatite/chitosan composite from aqueous solution. J. Taiwan Inst. Chem. Eng. 43, 125–131 (2012). CrossRefGoogle Scholar
  20. Howe, P.D., Kingdom, U.: Cobalt and inorganic cobalt. IPCS Concise Int. Chem. Assess. Doc. 69, 1–93 (2006)Google Scholar
  21. Janusz, W., Skwarek, E.: Effect of Co(II) ions adsorption in the hydroxyapatite/aqueous NaClO4solution system on particles electrokinetics. Physicochem. Probl. Miner. Process. 54, 31–39 (2018). Google Scholar
  22. Lamonier, C., Lamonier, J.F., Aellach, B., Ezzamarty, A., Leglise, J.: Specific tuning of acid/base sites in apatite materials to enhance their methanol thiolation catalytic performances. Catal. Today. 164, 124–130 (2011). CrossRefGoogle Scholar
  23. Liss, P.S., Slater, P.G.: © 1974 Nature Publishing Group. News Views. (1974)Google Scholar
  24. Ma, Q.Y., Traina, S.J., Logan, T.J., Ryan, J.A.: Effects of aqueous Al, Cd, Cu, Fe(II), Ni, and Zn on Pb immobilization by hydroxyapatite. Environ. Sci. Technol. 28, 1219–1228 (1994). CrossRefGoogle Scholar
  25. Martell, A.: Critical stability constants: inorganic complexes. Springer, Berlin (2013)Google Scholar
  26. McAnally, S., Benefield, L., Reed, R.B.: Nickel removal from a synthetic nickel-plating wastewater using sulfide and carbonate for precipitation and coprecipitation. Sep. Sci. Technol. 19, 191–217 (1984). CrossRefGoogle Scholar
  27. Medellin-Castillo, N.A., Padilla-Ortega, E., Regules-Martínez, M.C., Leyva-Ramos, R., Ocampo-Pérez, R., Carranza-Alvarez, C.: Single and competitive adsorption of Cd(II) and Pb(II) ions from aqueous solutions onto industrial chili seeds (Capsicum annuum) waste. Sustain. Environ. Res. 27, 61–69 (2017). CrossRefGoogle Scholar
  28. Meejoo, S., Maneeprakorn, W., Winotai, P.: Phase and thermal stability of nanocrystalline hydroxyapatite prepared via microwave heating. Thermochim. Acta. 447, 115–120 (2006). CrossRefGoogle Scholar
  29. Meyer, J.L., Eanes, E.D.: Phosphate transformation. Calcif. Tiss. Res. 25, 59–68 (1978)CrossRefGoogle Scholar
  30. Mobasherpour, I., Salahi, E., Pazouki, M.: Removal of nickel (II) from aqueous solutions by using nano-crystalline calcium hydroxyapatite. J. Saudi Chem. Soc. 15, 105–112 (2011). CrossRefGoogle Scholar
  31. Mobasherpour, I., Salahi, E., Pazouki, M.: Comparative of the removal of Pb2+, Cd2+ and Ni2+ by nano crystallite hydroxyapatite from aqueous solutions: adsorption isotherm study. Arab. J. Chem. 5, 439–446 (2012). CrossRefGoogle Scholar
  32. Mohammad, A.M., Eldin, S., Hassan, T.A., El-Anadouli, M.A.: Efficient treatment of lead-containing wastewater by hydroxyapatite/chitosan nanostructures. Arab. J. Chem. 10, 683–690 (2017). CrossRefGoogle Scholar
  33. Mousa, S.M., Ammar, N.S., Ibrahim, H.A.: Removal of lead ions using hydroxyapatite nano-material prepared from phosphogypsum waste. J. Saudi Chem. Soc. 20, 357–365 (2016). CrossRefGoogle Scholar
  34. Nackerdien, Z., Kasprzak, K.S., Rao, G., Halliwell, B., Dizdaroglu, M.: Nickel(II)–and Cobalt(II)-dependent damage by hydrogen peroxide to the DNA bases in isolated human chromatin nickel (H)- and Cobalt (II)-dependent damage by hydrogen peroxide to the DNA bases in isolated human chromatin1. Cancer Res. 51, 5837–5842 (1991)Google Scholar
  35. Pham Minh, D., Tran, N.D., Nzihou, A., Sharrock, P.: Hydroxyapatite gel for the improved removal of Pb2+ ions from aqueous solution. Chem. Eng. J. 232, 128–138 (2013). CrossRefGoogle Scholar
  36. Rabah, M.A., Farghaly, F.E., Abd-El Motaleb, M.A.: Recovery of nickel, cobalt and some salts from spent Ni-MH batteries. Waste Manag. 28, 1159–1167 (2008). CrossRefGoogle Scholar
  37. Recillas, S., Rodríguez-Lugo, V., Montero, M.L., Viquez-Cano, S., Hernandez, L., Castaño, V.M.: Studies on the precipitation behavior of calcium phosphate solutions. J. Ceram. Process. Res. 13, 5–10 (2012)Google Scholar
  38. Reichert, J., Binner, J.G.P.: An evaluation of hydroxyapatite-based filters for removal of heavy metal ions from aqueous solutions. J. Mater. Sci. 31, 1231–1241 (1996). CrossRefGoogle Scholar
  39. Rivera-Munoz, E.M.: Hydroxyapatite-based materials: synthesis and characterization. In: Biomedical Engineering—Frontiers and Challenges. pp. 75–98. InTech. (2011)Google Scholar
  40. Rosskopfová, O., Galamboš, M., Pivarčiová, L., Čaplovičová, M., Rajec, P.: Adsorption of nickel on synthetic hydroxyapatite from aqueous solutions. J. Radioanal. Nucl. Chem. 295, 459–465 (2013). CrossRefGoogle Scholar
  41. Rötting, T.S., Cama, J., Ayora, C., Cortina, J.L., De Pablo, J.: Use of caustic magnesia to remove cadmium, nickel, and cobalt from water in passive treatment systems: column experiments. Environ. Sci. Technol. 40, 6438–6443 (2006). CrossRefGoogle Scholar
  42. Schiavoni, M., Campisi, S., Carniti, P., Gervasini, A., Delplanche, T.: Focus on the catalytic performances of Cu-functionalized hydroxyapatites in NH3-SCR reaction. Appl. Catal. A Gen. 563, 43–53 (2018). CrossRefGoogle Scholar
  43. Silvester, L., Lamonier, J.F., Vannier, R.N., Lamonier, C., Capron, M., Mamede, A.S., Pourpoint, F., Gervasini, A., Dumeignil, F.: Structural, textural and acid-base properties of carbonate-containing hydroxyapatites. J. Mater. Chem. A. 2, 11073–11090 (2014). CrossRefGoogle Scholar
  44. Singh, J.S., Abhilash, P.C., Singh, H.B., Singh, R.P., Singh, D.P.: Genetically engineered bacteria: an emerging tool for environmental remediation and future research perspectives. Gene. 480, 1–9 (2011a). Scholar
  45. Singh, R., Gautam, N., Mishra, A., Gupta, R.: Heavy metals and living systems: an overview. Indian J. Pharmacol. 43, 246 (2011b). .CrossRefGoogle Scholar
  46. Skwarek, E., Janusz, W.: Adsorption of Cd(II) ions at the hydroxyapatite/electrolyte solution interface. Sep. Sci. Technol. 51, 11–21 (2016). CrossRefGoogle Scholar
  47. Smičiklas, I.D., Milonjić, S.K., Pfendt, P., Raičević, S.: The point of zero charge and sorption of cadmium (II) and strontium (II) ions on synthetic hydroxyapatite. Sep. Purif. Technol. 18, 185–194 (2000). CrossRefGoogle Scholar
  48. Smičiklas, I., Dimović, S., Plećaš, I., Mitrić, M.: Removal of Co2+ from aqueous solutions by hydroxyapatite. Water Res. 40, 2267–2274 (2006). CrossRefGoogle Scholar
  49. Smičiklas, I., Onjia, A., Raičević, S., Janaćković, D.: Factors influencing the removal of divalent cations by hydroxyapatite. J. Hazard. Mater. 168, 560–562 (2009). CrossRefGoogle Scholar
  50. Sprynskyy, M., Buszewski, B., Terzyk, A.P., Namieśnik, J.: Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite. J. Colloid Interface Sci. 304, 21–28 (2006). CrossRefGoogle Scholar
  51. WHO: Drinking Water Parameter Cooperation Project: support to the revision of Annex I Council Directive 98/83/EC on the Quality of Water Intended for Human Consumption (Drinking Water Directive) Recommendations. (2017)Google Scholar
  52. Zhu, R., Yu, R., Yao, J., Mao, D., Xing, C., Wang, D.: Removal of Cd2 + from aqueous solutions by hydroxyapatite. Catal. Today. 139, 94–99 (2008). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento di ChimicaUniversità degli Studi di MilanoMilanoItaly

Personalised recommendations