, Volume 26, Issue 2, pp 165–175 | Cite as

Adsorption microcalorimetry as a tool in the characterization of amine-grafted mesoporous silicas for CO2 capture

  • K. S. Sánchez-Zambrano
  • E. Vilarrasa-García
  • D. A. S. Maia
  • M. Bastos-Neto
  • E. Rodríguez-Castellon
  • D. C. S. AzevedoEmail author


In this work, amine-grafted mesoporous silica were investigated using a adsorption microcalorimetry and supplementary techniques in order to study the influence of increasing the density of grafted amine on the CO2 binding mechanisms. A Tian–Calvet microcalorimeter coupled to a manometric setup was used to evaluate the energetic heterogeneity of adsorption sites and to calculate the thermokinetic parameter from the differential enthalpy curves. With such device, equilibrium adsorption isotherms of CO2 were simultaneously measured at 25 °C for all samples up to 1 bar. The adsorption microcalorimetric study suggests a change in active sites distribution as the density of grafted amines increases. The maximum thermokinetic parameter of 471 s for the pure silica support at 30.7 kJ mol−1 suggests that physisorption is the dominant binding mechanism. A different behavior occurs with the grafted samples: they have considerably higher enthalpy values corresponding to the formation of reacted species on the surface (chemisorbed CO2), which depend on grafted amine density and available free surface silanols. Kinetics of formation of chemisorption products, together with hindered CO2 diffusion, seriously impair the approach to equilibrium, which leads to a decrease in uptake upon isothermal pressure-swing cycles at low temperatures (25 °C). CO2 could be successfully desorbed at 120 °C from the sample with highest uptake (MSG60), which showed a constant uptake for three adsorption–desorption cycles using only vacuum at 50 °C.


APTES-grafted silica CO2 adsorption Microcalorimetry Thermokinetic parameter 



The authors are thankful to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), together with Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), for funding grants to Sanchez-Zambrano, Vilarrasa-Garcia and Maia. Analytical support (29Si RMN) provided by the Institute of Chemistry at UNICAMP (Brazil) is gratefully acknowledged.


  1. Alkhabbaz, M.A., Bollini, P., Foo, G.S., Sievers, C., Jones, C.W.: Important Roles of enthalpic and entropic contributions to CO2 capture from simulated flue gas and ambient air using mesoporous silica grafted amines. J. Am. Chem. Soc. 136, 13170–13173 (2014)CrossRefGoogle Scholar
  2. Auroux, A.: Calorimetry and thermal methods in catalysis. Springer Berlin Heidelberg, Berlin (2013)CrossRefGoogle Scholar
  3. Aziz, B., Hedin, N., Bacsik, Z.: Quantification of chemisorption and physisorption of carbon dioxide on porous silica modified by propylamines: effect of amine density. Microporous Mesoporous Mater. 159, 42–49 (2012)CrossRefGoogle Scholar
  4. Bacsik, Z., Ahlsten, N., Ziadi, A., Zhao, G., Garcia-Bennett, A.E., Martín-Matute, B., Hedin, N.: Mechanisms and kinetics for sorption of CO2 on bicontinuous mesoporous silica modified with n-propylamine. Langmuir 27, 11118–11128 (2011)CrossRefGoogle Scholar
  5. Bollini, P., Brunelli, N.A., Didas, S.A., Jones, C.W.: Dynamics of CO2 adsorption on amine adsorbents. 2. Insights into adsorbent design. Ind. Eng. Chem. Res. 51, 15153–15162 (2012)CrossRefGoogle Scholar
  6. Bourrelly, S., Llewellyn, P.L., Serre, C., Millange, F., Loiseau, T., Férey, G.: Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47. J. Am. Chem. Soc. 127, 13519–13521 (2005)CrossRefGoogle Scholar
  7. Cardona-Martinez, N., Dumesic, J.A.: Applications of adsorption microcalorimetry to the study of heterogeneous catalysis. Adv. Catal. 38, 149–244 (1992)Google Scholar
  8. Choi, S., Drese, J.H., Jones, C.W.: Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem 2, 796–854 (2009)CrossRefGoogle Scholar
  9. Condon, J.B.: Surface Area and Porosity Determinations by Physisorption: Measurements and Theory. Elsevier, Amsterdam (2006)Google Scholar
  10. da Silva, F.W.M., Maia, D.A.S., Oliveira, R.S., Moreno-Piraján, J.C., Sapag, K., Cavalcante, C.L., Zgrablich, G., Azevedo, D.C.S.: Adsorption microcalorimetry applied to the characterisation of adsorbents for CO2 capture. Can. J. Chem. Eng. 90, 1372–1380 (2012)CrossRefGoogle Scholar
  11. Danon, A., Stair, P.C., Weitz, E.: FTIR study of CO2 adsorption on amine-grafted SBA-15: elucidation of adsorbed species. J. Phys. Chem. C 115, 11540–11549 (2011)CrossRefGoogle Scholar
  12. Didas, S.A., Sakwa-Novak, M.A., Foo, G.S., Sievers, C., Jones, C.W.: Effect of amine surface coverage on the Co-adsorption of CO2 and water: spectral deconvolution of adsorbed species. J. Phys. Chem. Lett. 5, 4194–4200 (2014)CrossRefGoogle Scholar
  13. Foo, G.S., Polo-Garzon, F., Fung, V., Jiang, D., Overbury, S.H., Wu, Z.: Acid–base reactivity of perovskite catalysts probed via conversion of 2-propanol over titanates and zirconates. ACS Catal. 7, 4423–4434 (2017)CrossRefGoogle Scholar
  14. Fulvio, P.F., Pikus, S., Jaroniec, M.: Tailoring properties of SBA-15 materials by controlling conditions of hydrothermal synthesis. J. Mater. Chem. 15, 5049 (2005)CrossRefGoogle Scholar
  15. Giraldo, L., Moreno-Piraján, J.C.: CO2 adsorption on activated carbon prepared from mangosteen peel: study by adsorption calorimetry. J. Therm. Anal. Calorim. 133, 337–354 (2018)CrossRefGoogle Scholar
  16. Hahn, M.W., Jelic, J., Berger, E., Reuter, K., Jentys, A., Lercher, J.A.: Role of amine functionality for CO2 chemisorption on silica. J. Phys. Chem. B 120, 1988–1995 (2016)CrossRefGoogle Scholar
  17. Hiyoshi, N., Yogo, K., Yashima, T.: Adsorption of carbon dioxide on modified mesoporous materials in the presence of water vapor. Stud. Surf. Sci. Catal. 154, 2995–3002 (2004)CrossRefGoogle Scholar
  18. Kim, I., Svendsen, H.F.: Heat of absorption of carbon dioxide (CO2) in monoethanolamine (MEA) and 2-(aminoethyl)ethanolamine (AEEA) solutions. Ind. Eng. Chem. Res. 46, 5803–5809 (2007)CrossRefGoogle Scholar
  19. Kim, S.N., Son, W.J., Choi, J.S., Ahn, W.S.: CO2 adsorption using amine-functionalized mesoporous silica prepared via anionic surfactant-mediated synthesis. Microporous Mesoporous Mater. 115, 497–503 (2008)CrossRefGoogle Scholar
  20. Knöfel, C., Martin, C., Hornebecq, V., Llewellyn, P.L.: Study of carbon dioxide adsorption on mesoporous aminopropylsilane-functionalized silica and titania combining microcalorimetry and in situ infrared spectroscopy. J. Phys. Chem. C 113, 21726–21734 (2009)CrossRefGoogle Scholar
  21. Lettow, J.S., Han, Y.J., Schmidt-Winkel, P., Yang, P., Zhao, D., Stucky, G.D., Ying, J.Y.: Hexagonal to mesocellular foam phase transition in polymer-templated mesoporous silica. Langmuir 16, 8291–8295 (2000)CrossRefGoogle Scholar
  22. Lilić, A., Wei, T., Bennici, S., Devaux, J.F., Dubois, J.L., Auroux, A.: A comparative study of basic, amphoteric, and acidic catalysts in the oxidative coupling of methanol and ethanol for acrolein production. ChemSusChem 10, 3459–3472(2017)CrossRefGoogle Scholar
  23. Llewellyn, P.: Characterization of microporous materials by adsorption microcalorimetry. Recent Adv. Gas Sep. Microporous Ceram. Membr. 6, 213–230 (2000)CrossRefGoogle Scholar
  24. Maia, D.A.S., Alexandre de Oliveira, J.C., Nazzarro, M.S., Sapag, K.M., López, R.H., Lucena, S.M.P., Azevedo, D.C.S.: CO2 gas-adsorption calorimetry applied to the study of chemically activated carbons. Chem. Eng. Res. Des. 136, 753–760 (2018)CrossRefGoogle Scholar
  25. Ojeda-López, R., Pérez-Hermosillo, I.J., Esparza-Schulz, J.M., Cervantes-Uribe, A., Domínguez-Ortiz, A.: SBA-15 materials: calcination temperature influence on textural properties and total silanol ratio. Adsorption 21, 659–669 (2015)CrossRefGoogle Scholar
  26. Potter, M.E., Pang, S.H., Jones, C.W.: Adsorption microcalorimetry of CO2 in confined aminopolymers. Langmuir 33, 117–124 (2017)CrossRefGoogle Scholar
  27. Rouquerol, F., Rouquerol, J., Sing, K.S.W., Llewellyn, P.L., Maurin, G.: Adsorption by Powders and Porous Solids: Principles, Methodology and Applications, 2nd Ed. Elsevier, Amsterdam (2014)Google Scholar
  28. Saha, A.: Structure-function, recyclability and calorimetry studies of CO2 adsorption on some amine modified type I & type II sorbents. Int. J. Greenh. Gas Control 78, 198–209 (2018)CrossRefGoogle Scholar
  29. Sánchez-Zambrano, K.S., Duarte, L.L., Maia, D.A.S., Vilarrasa-García, E., Bastos-Neto, M., Rodríguez-Castellón, E., Azevedo, D.C.S.: CO2 capture with mesoporous silicas modified with amines by double functionalization: assessment of adsorption/desorption cycles. Materials 11, 887 (2018)CrossRefGoogle Scholar
  30. Savino, R., Casadonte, F., Terracciano, R.: Mesopore protein digestion: a new forthcoming strategy in proteomics. Molecules 16, 5938–5962 (2011)CrossRefGoogle Scholar
  31. Schmidt-Winkel, P., Lukens, W.W., Zhao, D., Yang, P., Chmelka, B.F., Stucky, G.D.: Mesocellular siliceous foams with uniformly sized cells and windows. J. Am. Chem. Soc. 121, 254–255 (1999)CrossRefGoogle Scholar
  32. Sumida, K., Rogow, D.L., Mason, J.A., McDonald, T.M., Bloch, E.D., Herm, Z.R., Bae, T.-H., Long, J.R.: Carbon dioxide capture in metal-organic frameworks. Chem. Rev. 112, 724–781 (2012)CrossRefGoogle Scholar
  33. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. (2015). CrossRefGoogle Scholar
  34. Vilarrasa-Garcia, E., Moya, E.M.O., Cecilia, J.A., Cavalcante, C.L. Jr., Jiménez-Jiménez, J., Azevedo, D.C.S., Rodríguez-Castellón, E.: CO2 adsorption on amine modified mesoporous silicas: Effect of the progressive disorder of the honeycomb arrangement. Microporous Mesoporous Mater. 209, 172–183 (2015)CrossRefGoogle Scholar
  35. Vilarrasa-García, E., Cecilia, J.A., Santos, S.M.L., Cavalcante, C.L. Jr., Jiménez-Jiménez, J., Azevedo, D.C.S., Rodríguez-Castellón, E.: CO2 adsorption on APTES functionalized mesocellular foams obtained from mesoporous silica. Microporous Mesoporous Mater. 187, 125–134 (2014)CrossRefGoogle Scholar
  36. Yoo, C.J., Lee, L.C., Jones, C.W.: Probing intramolecular versus intermolecular CO2 adsorption on amine-grafted SBA-15. Langmuir 31, 13350–13360 (2015)CrossRefGoogle Scholar
  37. Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G.H., Chmelka, B.F., Stucky, G.D.: Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548–552 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.GPSA/LPACO2, Chemical Engineering DepartmentUniversidade Federal do CearáFortalezaBrazil
  2. 2.Departamento de Química Inorgánica, Facultad de CienciasUniversidad de MálagaMálagaSpain

Personalised recommendations