Advertisement

Adsorption

pp 1–9 | Cite as

Mathematical model for the encapsulation of Alanine amino acid inside a single-walled carbon nanotube

  • Hakim Al GarallehEmail author
  • Mazen Garaleh
  • Ghassan Alabadleh
Article
  • 17 Downloads

Abstract

Carbon nanotubes play a significant role in facilitating and controlling the transportation of drugs and bio-molecules through their internal and external surfaces. Carbon nanotubes are also selective nano-devices because of their outstanding properties and huge potential use in many bio-medical and drug delivery applications. The proposed model aims to investigate the encapsulation of Alanine molecule inside a single-walled carbon nanotube, and to determine the minimum energy which is arising from the Alanine interacting with single-walled carbon nanotubes with variant radii r. We consider two possible structures as models of Alanine molecule which are a spherical shell as a continuum configuration and discrete configuration modelled as comprising three components: the linear molecule, cylindrical group, and CH3 molecule as a sphere, all interacting with infinite cylindrical single-walled carbon nanotube. The adsorption of Alanine amino acid and magnitude of total energy for each orientation calculated based on the nanotube radius r and the orientation angle \(\phi\) which the amino acid makes with central axis of the cylindrical nanotube. Our results indicate that the Alanine molecule encapsulated inside the nanotubes of radius greater than 3.75 Å, which are in excellent agreement with recent findings.

Keywords

Carbon nanotube (CNT) Alanine amino acid (ALA) Encapsulation Potential energy Van der Waals Force and Lennard-Jones potential 

Notes

Acknowledgements

The author acknowledges the University of Business and Technology for the provision of the Deanship and Scientific Research (DSR).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving animal rights

This article does not contain any studies with animals performed by any of authors.

References

  1. Al Garalleh, H.: Modelling of encapsulation of Cystine amino acid inside single-walled carbon nanotube. Mater. Express 7, 389–397 (2017)CrossRefGoogle Scholar
  2. Al Garalleh, H., Thamwattana, N., Cox, B.J., Hill, J.M.: Encapsulation of L-Histidine amino acid inside single-walled carbon nanotubes. J. Biomater. Tissue Eng. 6, 362–369 (2016)CrossRefGoogle Scholar
  3. Al-Jamal, K.T., Kostarelos, K.: Science of fullerenes and carbon nanotubes: Imaging carbon nanotubes in vivo: a vignette of imaging modalities at the nanoscale. In: Goins, B., Phillips, W. (eds.) Nanoimaging. Pan Stanford Publishing Pte. Ltd, Singapore (1996)Google Scholar
  4. Anslyn, E., Dougherty, D.A.: Modern Physical Organic Chemistry. University Science Books, Sausalito, CA (2006)Google Scholar
  5. Balasubramanian, K., Burghard, M.: Biosensors based on carbon nanotubes. Anal. Bioanal. Chem. 385, 452–468 (2006)CrossRefGoogle Scholar
  6. Balavoine, F., Schultz, P., Richard, C., Mallouh, V., Ebbesen, T.: Helical crystallization of proteins on carbon nanotubes: a first step towards the development of new biosensors. Angew. Chem. Int. Ed. 38, 1912–1915 (1999)CrossRefGoogle Scholar
  7. Benson, S.W.: III-bond energies. J. Chem. Educ. 42(9), 502 (1965)CrossRefGoogle Scholar
  8. Besteman, K., Lee, J., Wiertz, F.G.M., Heering, H., Dekker, C.: Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett. 3, 727–730 (2003)CrossRefGoogle Scholar
  9. Chang, C.M., Tseng, H.L., Leon, A.D., Jalbout, A.F.: Theoretical study of amino acids encapsulation in zigzag single-walled carbon nanotubes. J. Comput. Theor. Nanosci. 10, 521–526 (2013)CrossRefGoogle Scholar
  10. Chen, R.J., Bangsaruntip, S., Drouvalakis, K.A., Kam, N.W.S., Shim, M., Li, Y., Kim, W., Utz, P., Dai, H.: Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl. Acad. Sci. U.S.A. 100, 4984–4989 (2003)CrossRefGoogle Scholar
  11. Cheng, Y., Liu, G.R., Li, Z.R., Liu, C.: Computational analysis of binding free energies between peptides and single-walled carbon nanotubes. Physica A 367, 293–403 (2006)CrossRefGoogle Scholar
  12. Contreras-Torres, F.F., Jalbout, A.F., Jimenez-Fabian, I., Amelines, O.F., Basiuk, V.A.: Interaction of cation-encapsulated single-walled carbon nanotubes with small polar molecules. J. Phys. Chem. C 112, 2736–2742 (2008)CrossRefGoogle Scholar
  13. Cottrell, L.T.: The Strengths of Chemical Bonds. Butterworths Scientific Publications, London (1958)Google Scholar
  14. Cox, B.J., Thamwattana, N., Hill, J.M.: Mechanics of atoms and fullerenes in single-walled carbon nanotubes. In: Proceeding of The Royal Society A, London, UK 463, 461–476 (2006)Google Scholar
  15. Cox, B.J., Thamwattana, N., Hill, J.M.: Mechanics of nanotubes oscillating in carbon nanotube bundles. Proceeding of the Royal Society A, London, vol. 464, pp. 691–710 (2008)Google Scholar
  16. David, L.N., Michael, M.C.: Principles of Biochemistry. W. H. Freeman, New York (2005)Google Scholar
  17. Davies, J.S.: Amino Acids, Peptides and Proteins. Royal Society of Chemistry, London (2006)CrossRefGoogle Scholar
  18. Dawson, R.M.C.: Data for Biochemical Research. Clarendon Press, Oxford (1959)Google Scholar
  19. de Darwent, B.B.: National Standard Reference Data Series. National Bureau of Standards, Washington, DC (1970)Google Scholar
  20. De Jong, W.H., Borm, P.J.A.: Drug delivery and nanoparticles: applications and hazards. Int. J. Nanomed. 3, 133–149 (2008)CrossRefGoogle Scholar
  21. Doolittle, R.F.: Redundancies in protein sequences. In: Fasman, G. D. (ed.) Prediction of protein structures and the principles of protein conformation. Plenum, New York (1989)Google Scholar
  22. Dresselhaus, M.S., Dresselhaus, G., Eklund, P.C.: Science of Fullerenes and Carbon Nanotubes. Academic Press, San Diego (1996)Google Scholar
  23. Duncan, R.: The dawning era of polymer therapeutics. Nat. Rev. Drug Disc. 2, 347–360 (2003)CrossRefGoogle Scholar
  24. Ferrari, M.: Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer 5, 161–171 (2005)CrossRefGoogle Scholar
  25. Ganji, M.D.: Theoretical study of the adsorption of \(\text{ CO }_2\) on tungsten carbide nanotubes. Phys. Lett. A 372, 3277 (2008)CrossRefGoogle Scholar
  26. Ganji, M.D.: Behavior of a single nitrogen molecule on the pentagon at a carbon nanotube tip: a first-principles study. Nanotechnology 19, 25709–25714 (2008)CrossRefGoogle Scholar
  27. Ganji, M.D.: Calculations of encapsulation of amino acids inside the \((13,0)\) single-walled carbon nanotube. Fuller. Nanotub. Carbon Nanostruct. 18, 24–36 (2010)CrossRefGoogle Scholar
  28. Hirschfelder, J.O., Curtiss, C.F., Byron, R.B.: Molecular Theory of Gases and Liquids. New York: Society for Industrial and Applied Mathematics, University of Wisconsin–Madison (1964)Google Scholar
  29. Huajian, G., Yong, K., Daxiang, C.: Spontaneous insertion of DNA oligonucleotides into carbon nanotubes. Nano Lett. 3, 471–473 (2003)CrossRefGoogle Scholar
  30. Kendall, E.C., Mckenzie, B.F.: A publication of reliable methods for the preparation of organic compounds. Org. Synth. 9, 4 (1929)CrossRefGoogle Scholar
  31. Koski, R.R.: Omega-3-acid ethyl esters (Lovaza) for severe hypertriglyceridemia. Pharm. Ther. 33, 271–303 (2008)Google Scholar
  32. Lin, Y., Taylor, S., Li, H., Fernando, K.A.S., Qu, L., Wang, W., Gu, L., Zhou, B., Sun, Y.P.: Advances toward bioapplications of carbon nanotubes. J. Mater. Chem. 14, 527–541 (2004)CrossRefGoogle Scholar
  33. Liu, G.R., Cheng, Y., Dong, M., Li, Z.R.: A study on self-insertion of peptides into single-walled carbon nanotubes based on molecular dynamics simulation. Int. J. Mod. Phys. C 16, 1239–1250 (2005)CrossRefGoogle Scholar
  34. Lu, A.J., Pan, B.C.: Interaction of hydrogen with vacancies in a \((12,0)\) carbon nanotube. Phys. Rev. B 71, 165416 (2005)CrossRefGoogle Scholar
  35. Madani, S.Y., Naderi, N., Dissanayake, O., Tan, A., Seifalian, A.M.: A new era of cancer treatment: carbon nanotubes as drug delivery tools. Int. J. Nanomed. 6, 2963–2979 (2011)Google Scholar
  36. Mahmood, M., Karmakar, A., Fejleh, A., Mocan, T., Iancu, C., Mocan, L., Iancu, D.T., Xu, Y., Dervishi, E., Li, Z., Biris, A.R., Agarwal, R., Ali, N., Galanzha, E.I., Biris, A.S., Zharov, V.P.: Synergistic enhancement of cancer therapy using a combination of carbon nanotubes and anti-tumor drug. Nanomedicine 4(8), 883–893 (2009)CrossRefGoogle Scholar
  37. Pantarotto, D., Partidos, C.D., Graff, R., Hoebeke, J., Briand, J.P., Prato, M., Bianco, A.: Synthesis, structural characterization and immunological properties of carbon nanotubes functionalized with peptides. J. Am. Chem. Soc. 125, 6160–6164 (2003)CrossRefGoogle Scholar
  38. Pantarotto, D., Partidos, C.D., Hoebeke, J., Brown, F., Kramer, E., Briand, J.P., Muller, S., Prato, M., Bianco, A.: Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. J. Am. Chem. Soc. 10, 961–966 (2003)Google Scholar
  39. Pantarotto, D., Briand, J.P., Prato, M., Bianco, A.: Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem. Commun. (Camb) 1, 16–17 (2004)CrossRefGoogle Scholar
  40. Pastorin, G., Kostarelos, K., Prato, M., Bianco, A.: Functionalized carbon nanotubes: towards the delivery of therapeutic molecules. J. Biomed. Nanotechnol. 1, 1–10 (2005)CrossRefGoogle Scholar
  41. Paul, B., Watkins, M.D., Kaplowitz, M.D.N., John, T., Slattery, PhD, Connie, R., Colonese, M.S., Salvatore, V., Colucci, M.S., Paul, W., Stewart, PhD, Stephen, C., Harris, M.D.: Aminotransferase elevations in healthy adults receiving 4 grams of acetaminophen daily a randomized controlled trial. J. Am. Med. Assoc. 296, 87–93 (2006)CrossRefGoogle Scholar
  42. Pupysheva, O.V., Farajian, A.A., Yakobson, B.I.: Fullerene nanocage capacity for hydrogen storage. Nano Lett. 8, 767 (2008)CrossRefGoogle Scholar
  43. Rappi, A.K., Casewit, C.J., Colwell, K.S., Goddard III, W.A., Skid, W.M.: UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992)CrossRefGoogle Scholar
  44. Roman, T., Dino, W.A., Nakanishi, H., Kasai, H.: Amino acid adsorption on single-walled carbon nanotubes. Eur. Phys. J. D 38, 117–120 (2006)CrossRefGoogle Scholar
  45. Salimi, A., Compton, R.G., Hallaj, R.: Glucose biosensor prepared by glucose oxidase encapsulated sol-gel and carbon-nanotube-modified basal plane pyrolytic graphite electrode. Anal. Biochem. 333, 49–56 (2004)CrossRefGoogle Scholar
  46. Salvador-Morales, C., Flahaut, E., Sim, E., Sloan, J., Green, M.L., Sim, R.B.: Complement activation and protein adsorption by carbon nanotubes. Mol. Immunol. 43(3), 193–201 (2006)CrossRefGoogle Scholar
  47. Star, A., Gabriel, J.C.P., Bradley, K., Gruner, G.: Electronic detection of specific protein binding using nanotube FET devices. Nano Lett. 3, 459–463 (2003)CrossRefGoogle Scholar
  48. Trzaskowski, B., Jalbout, A.F., Adamowicz, L.: Molecular dynamics studies of protein-fragment models encapsulated into carbon nanotubes. Chem. Phys. Lett. 430, 97–100 (2006)CrossRefGoogle Scholar
  49. Tsang, S.C., Davis, J.J., Malcolm, L., Green, H., Allen, H., Hill, O., Leung, Y.C., Sadler, J.P.: Immobilization of small proteins in carbon nanotubes: high-resolution transmission electron microscopy study and catalytic activity. J. Chem. Soc. Chem. Commun. 17, 1803–1804 (1995)CrossRefGoogle Scholar
  50. Tsang, S.C., Guo, Z., Chen, Y.K., Green, M.L.H., Allen, H., Hill, O., Hambley, T.W., Sadler, P.J.: Immobilization of platinated and iodinated oligonucleotides on carbon nanotubes. Angew. Chem. Int. Ed. 36, 2197–2198 (1997)CrossRefGoogle Scholar
  51. Vardanega, D., Picaud, F.: Detection of amino acids encapsulation and adsorption with dielectric carbon nanotube. J. Biotechnol. 144, 96–101 (2009)CrossRefGoogle Scholar
  52. Vardharajula, S., Ali, S.Z., Tiwari, P.M., Eroglu, E., Vig, K., Dennis, V.A., Singh, S.R.: Functionalized carbon nanotubes: biomedical applications. Int. J. Nanomed. 7, 5361–5374 (2012)Google Scholar
  53. Wilder, J.W.G., Venema, L.C., Rinzler, A.G., Smalley, R.E., Dekker, C.: Electronic structure of atomically resolved carbon nanotubes. Nature 391, 59–62 (1998)CrossRefGoogle Scholar
  54. Yang, W., Thordarson, P., Gooding, J.J., Ringer, S.P., Braet, F.: Carbon nanotubes for biological and biomedical applications. Nanotechnology 18, 4951–4957 (2007)Google Scholar
  55. Zhao, J., Buldum, A., Han, J., Lu, J.P.: Gas molecule adsorption in carbon nanotubes and nanotube bundles. Nanotechnology 13, 195–200 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Hakim Al Garalleh
    • 1
    • 2
    Email author
  • Mazen Garaleh
    • 1
    • 3
  • Ghassan Alabadleh
    • 2
  1. 1.Department of Mathematical Science, College of EngineeringUniversity of Business and Technology-DahbanJeddahSaudi Arabia
  2. 2.School of Statistics and Applied Mathematics, College of Informatic SystemUniversity of WollongongWollongongAustralia
  3. 3.Department of Applied Chemistry, Faculty of ScienceTafila Technical UniversityTafilaJordan

Personalised recommendations